Skip to main content
Log in

Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zetasizer were used to evaluate the most suitable parameter set. Copper wires were used as electrodes (copper content = 99.7%, diameter = 1 mm), and deionized water mixed with iodine was used as the dielectric fluid. The analysis results indicated that the CuINC prepared under Ton–Toff = 10–10 µs had absorbance of 1.8 and a zeta potential of − 31.9 mV. The resultant CuINC had the highest concentration and suspension stability; this indicated that Ton–Toff = 10–10 µs is the most suitable parameter combination for preparing a CuINC. X-ray diffraction revealed a complete CuI crystal structure. Transmission electron microscopy images showed that most of the CuI nanoparticles were smaller than 5 nm and that the nanoparticles were evenly dispersed. The electric-discharge-based production process employed in this study is rapid and simple, and the end products have favorable suspension power. The method is a safe, environmentally friendly, and rapid method of preparing CuINCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CuINC:

Cuprous iodide nanocolloid

DC:

Direct current

NC:

Nanocolloid

CuINPs:

Cuprous iodide nanoparticles

ESDM:

Electrical Spark Discharge Method

EDX:

Energy-dispersive X-ray spectroscopy

DW:

Deionized water

UV–Vis:

Ultraviolet–Visible spectrophotometry

NPs:

Nanoparticles

XRD:

X-ray diffraction

EDMs:

Electrical discharge machines

TEM:

Transmission electron microscopy

References

  1. D. G. Barceloux and D. Barceloux (1999). Copper. J. Toxicol. 37 (2), 217–230.

    CAS  Google Scholar 

  2. J. Wolff (1969). Iodide goiter and the pharmacologic effects of excess iodide. Am. J Med. 47 (1), 101–124.

    Article  CAS  Google Scholar 

  3. A. Klapars and S. L. Buchwald (2002). Copper-catalyzed halogen exchange in aryl halides: an aromatic Finkelstein reaction. J. Am. Chem. Soc. 124 (50), 14844–14845.

    Article  CAS  Google Scholar 

  4. C. Chen, P. Liu, and C. Lu (2008). Synthesis and characterization of nano-sized ZnO powders by direct precipitation method. Chem. Eng. J. 144 (3), 509–513.

    Article  CAS  Google Scholar 

  5. S. X. Liu, X. Y. Chen, X. Chen, and C. L. Sun (2006). A novel high active TiO2/AC composite photocatalyst prepared by acid catalyzed hydrothermal method. Chin. Chem. Lett. 17 (4), 529–532.

    CAS  Google Scholar 

  6. D. G. Gromov, L. M. Pavlova, A. I. Savitskii, and A. Y. Trifonov (2015). Investigation of the early stages of condensation of Ag and Au on the amorphous carbon surface during thermal evaporation under vacuum. Phys. Solid State 57 (1), 173–180.

    Article  CAS  Google Scholar 

  7. Q. Ye, P. Y. Liu, Z. F. Tang, and L. Zhai (2007). Hydrophilic properties of nano-TiO2 thin films deposited by RF magnetron sputtering. Vacuum 81 (5), 627–631.

    Article  CAS  Google Scholar 

  8. K. H. Tseng, M. Y. Chung, and J. L. Chiu (2018). Application of nano-ag fabricated by the electrical spark discharge method for restraining aspergillus niger. Mater. Trans. 59 (7), 1101–1105.

    Article  CAS  Google Scholar 

  9. M. Yang, J. Z. Xu, S. Xu, J. J. Zhu, and H. Y. Chen (2004). Preparation of porous spherical CuI nanoparticles. Inorg. Chem. Commun. 7 (5), 628–630.

    Article  CAS  Google Scholar 

  10. Y. Zhou, G. Zhou, S. Wang, and S. Wang (2006). Preparation and photoluminescence of γ-CuI nanoparticles. Mater. Lett. 60 (17–18), 2184–2186.

    Article  CAS  Google Scholar 

  11. P. M. Sirimanne, M. Rusop, T. Shirata, T. Soga, and T. Jimbo (2003). Characterization of CuI thin films prepared by different techniques. Mater. Chem. Phys. 80 (2), 461–465.

    Article  CAS  Google Scholar 

  12. P. M. Sirimanne, M. Rusop, T. Shirata, T. Soga, and T. Jimbo (2002). Characterization of transparent conducting CuI thin films prepared by pulse laser deposition technique. Chem. Phys. Lett. 366 (5–6), 485–489.

    Article  CAS  Google Scholar 

  13. Y. Yang, X. Li, B. Zhao, H. Chen, and X. Bao (2004). Nano-particulate CuI film formed on porous copper substrate by iodination. Chem. Phys. Lett. 387 (4–6), 400–404.

    Article  CAS  Google Scholar 

  14. K. H. Ho and S. T. Newman (2003). State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 43 (13), 1287–1300.

    Article  Google Scholar 

  15. K. H. Tseng, M. Y. Chung, and C. Y. Chang (2017). Parameters for fabricating nano-Au colloids through the electric spark discharge method with micro-electrical discharge machining. Nanomaterials 7 (6), 133.

    Article  Google Scholar 

  16. M. Gostimirovic, P. Kovac, M. Sekulic, and B. Skoric (2012). Influence of discharge energy on machining characteristics in EDM. J. Mech. Sci. Technol. 26 (1), 173–179.

    Article  Google Scholar 

  17. K. H. Tseng, Y. H. Lin, D. C. Tien, H. C. Ku, and L. Stobinski (2018). Stability analysis of platinum nanoparticles prepared by ESDM in deionized water. Micro Nano Lett. 13, 1545.

    Article  CAS  Google Scholar 

  18. K. H. Tseng, H. C. Ku, D. C. Tien, and L. Stobinski (2019). Novel preparation of reduced graphene oxide–silver complex using an electrical spark discharge method. Nanomaterials 9 (7), 979.

    Article  CAS  Google Scholar 

  19. K. H. Tseng, H. C. Ku, D. C. Tien, and L. Stobinski (2019). Parameter control and concentration analysis of graphene colloids prepared by electric spark discharge method. Nanotechnol. Rev. 8 (1), 201–209.

    Article  CAS  Google Scholar 

  20. K. H. Tseng, C. Y. Chang, M. Y. Chung, and T. S. Cheng (2017). Fabricating TiO2 nanocolloids by electric spark discharge method at normal temperature and pressure. Nanotechnology 28 (46), 465701.

    Article  Google Scholar 

  21. E. Hontañón, J. M. Palomares, M. Stein, X. Guo, R. Engeln, H. Nirschl, and F. E. Kruis (2013). The transition from spark to arc discharge and its implications with respect to nanoparticle production. J. Nanopart. Res. 15 (9), 1957.

    Article  Google Scholar 

  22. H. E. De Bruyn and A. J. Pekelharing (1982). Has the «Delay Time» influence on the EDM-process? CIRP Ann. 31 (1), 103–106.

    Article  Google Scholar 

  23. Y. S. Wong, M. Rahman, H. S. Lim, et al. (2003). Investigation of micro-EDM material removal characteristics using single RC-pulse discharges. J. Mater. Process. Technol. 140 (1), 303–307.

    Article  Google Scholar 

  24. A. H. Qiang, L. M. Zhao, C. J. Xu, and M. Zhou (2007). Effect of dispersant on the colloidal stability of nano-sized CuO suspension. J. Dispers. Sci. Technol. 28 (7), 1004–1007.

    Article  CAS  Google Scholar 

  25. R. K. Sahu, S. S. Hiremath, P. V. Manivannan, and M. Singaperumal (2014). Generation and characterization of copper nanoparticles using micro-electrical discharge machining. Mater. Manuf. Process. 29 (4), 477–486.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Precision Research and Analysis Center, National Taipei University of Technology for technically supporting this research.

Funding

The authors would like to thank the Ministry of Science and Technology (MOST 108-2221-E-027-050-) for financial support of this research.

Author information

Authors and Affiliations

Authors

Contributions

Data curation, MC and DT; Formal analysis, WL; Funding acquisition, KT; Methodology, DT and WL; Project administration, KT; Resources, KT; Supervision, KT and LS; Validation, DT and LS; Writing—original draft, WL and DT; Writing—review & editing, LS and MC. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kuo-Hsiung Tseng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, KH., Lin, WJ., Chung, MY. et al. Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method. J Clust Sci 33, 2069–2075 (2022). https://doi.org/10.1007/s10876-021-02127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02127-z

Keywords

Navigation