Skip to main content
Log in

Effects of temperatures and pH values on rheological properties of cemented paste backfill

温度和pH 值对全尾砂膏体流变特性的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill (CPB) systems. CPB samples were prepared with temperatures ranging from 10 to 50 °C in 10 °C increments and pH values of 3, 7, and 13. Then, the CPB mixture were subjected to rheological tests, thermogravimetric analysis (TG), derivative thermogravimetry analysis (DTG), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Results demonstrated that the temperatures had significant effects on the rheological properties of CPB, whereas the effects of pH values were relatively unapparent. Higher temperatures (over 20 °C) were prone to bring higher shear stress, yield stress, and apparent viscosity with the same pH value condition. However, an overly high temperature (50 °C) cannot raise the apparent viscosity. Non-neutral conditions, for pH values of 3 and 13, could strengthen the shear stress and apparent viscosity at the same temperature. Two different yield stress curves could be discovered by uprising pH values, which also led to apparent viscosity of two various curves under the same temperatures (under 50 °C). Microscopically, rheological properties of CPB were affected by temperatures and pH values which enhanced or reduced the cement hydration procedures, rates, products and space structures.

摘要

本文研究了在不同温度和pH 值条件下, 温度和pH 值对全尾砂膏体流变特性的影响及其影响机制。在不同温度和pH 值的条件下制备全尾砂膏体, 温度控制分别设置在10, 20, 30, 40 和50 °C, pH 值控制分别设置为3, 7 和13。对制备完成的全尾砂膏体进行流变剪切试验, 热重实验(TG&DTG), 傅立叶变换红外光谱实验(FT-IR)和扫描电子显微镜分析(SEM)。研究结果表明, 温度对尾砂膏体的流变特性有显著影响, 而pH 值对全尾砂膏体的流变特性的影响相对较小。在相同的pH值条件下, 较高温度(超过20 °C)的全尾砂膏体易产生较高的剪切应力, 屈服应力和表观黏度, 但过高的温度(50 °C)无法达到更高的表观黏度。在同一温度, pH 值为3 和13 时的非中性环境下, 全尾砂膏体的剪切应力和表观黏度较中性条件都有所增强。相同温度下(低于50 °C), pH 值的升高会导致全尾砂膏体产生两种不同的屈服应力和表观黏度曲线。微观分析表明, 全尾砂膏体的流变特性受温度和pH值的影响, 温度和pH 值会影响全尾砂膏体中水泥的水化过程, 水化速率及水化产物的空间结构。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI Xi-bing, GONG Feng-qiang, TAO Ming, DONG Long-jun, DU Kun, CHU De -ma, ZHOU Zi-long, YIN Tu-bing. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767–782. DOI: https://doi.org/10.1016/j.jrmge.2017.04.004.

    Article  Google Scholar 

  2. LIU Yi-kai, ZHANG Qin-li, CHEN Qiu-song, QI Chong-chong, SU Zhu, HUANG Zhao-dong. Utilisation of water-washing pre-treated phosphogypsum for cemented paste backfill [J]. Minerals, 2019, 9(3): 175. DOI: https://doi.org/10.3390/min9030175.

    Article  Google Scholar 

  3. POURRET O, LANGE B, BONHOURE J, COLINET G, DECRÉE S, MAHY G, SÉLECK M, SHUTCHA M, FAUCON M P. Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo) [J]. Applied Geochemistry, 2016, 64: 43–55. DOI: https://doi.org/10.1016/j.apgeochem.2015.07.012.

    Article  Google Scholar 

  4. XUE Gai-li, YILMAZ E, SONG Wei-dong, CAO Shuai. Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes [J]. Construction and Building Materials, 2020, 241: 118113. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118113.

    Article  Google Scholar 

  5. CHEN Qiu-song, ZHANG Qin-li, FOURIE A, XIN Chen. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill [J]. Journal of Environmental Management, 2017, 201: 19–27. DOI: https://doi.org/10.1016/j.jenvman.2017.06.027.

    Article  Google Scholar 

  6. CHEN Qiu-song, ZHANG Qin-li, FOURIE A, CHEN Xin, QI Chong-chong. Experimental investigation on the strength characteristics of cement paste backfill in a similar stope model and its mechanism [J]. Construction and Building Materials, 2017, 154: 34–43. DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.142.

    Article  Google Scholar 

  7. FALL M, ADRIEN D, CÉLESTIN J C, POKHAREL M, TOURÉ M. Saturated hydraulic conductivity of cemented paste backfill [J]. Minerals Engineering, 2009, 22(15): 1307–1317. DOI: https://doi.org/10.1016/j.mineng.2009.08.002.

    Article  Google Scholar 

  8. CAO Shuai, XUE Gai-li, SONG Wei-dong, TENG Qing. Strain rate effect on dynamic mechanical properties and microstructure of cemented tailings composites [J]. Construction and Building Materials, 2020, 247: 118537. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118537.

    Article  Google Scholar 

  9. YILMAZ T, ERCIKDI B, CIHANGIR F. Evaluation of the neutralization performances of the industrial waste products (IWPs) in sulphide-rich environment of cemented paste backfill [J]. Journal of Environmental Management, 2020, 258: 110037. DOI: https://doi.org/10.1016/j.jenvman.2019.110037.

    Article  Google Scholar 

  10. HE Yan, CHEN Qiu-song, QI Chong-chong, ZHANG Qin-li, XIAO Chong-chun. Lithium slag and fly ash-based binder for cemented fine tailings backfill [J]. Journal of Environmental Management, 2019, 248: 109282. DOI: https://doi.org/10.1016/j.jenvman.2019.109282.

    Article  Google Scholar 

  11. CIHANGIR F, ERCIKDI B, KESIMAL A, OCAK S, AKYOL Y. Effect of sodium-silicate activated slag at different silicate modulus on the strength and microstructural properties of full and coarse sulphidic tailings paste backfill [J]. Construction and Building Materials, 2018, 185: 555–566. DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.105.

    Article  Google Scholar 

  12. WU D, FALL M, CAI S J. Coupling temperature, cement hydration and rheological behaviour of fresh cemented paste backfill [J]. Minerals Engineering, 2013, 42: 76–87. DOI: https://doi.org/10.1016/j.mineng.2012.11.011.

    Article  Google Scholar 

  13. KOU Yun-peng, JIANG Hai-qiang, REN Lei, YILMAZ E, LI Yuan-hui. Rheological properties of cemented paste backfill with alkali-activated slag [J]. Minerals, 2020, 10(3): 288. DOI: https://doi.org/10.3390/min10030288.

    Article  Google Scholar 

  14. QI Chong-chong, CHEN Qiu-song, DONG Xiang-jian, ZHANG Qin-li, YASEEN Z M. Pressure drops of fresh cemented paste backfills through coupled test loop experiments and machine learning techniques [J]. Powder Technology, 2020, 361: 748–758. DOI: https://doi.org/10.1016/j.powtec.2019.11.046.

    Article  Google Scholar 

  15. JIAO Hua-zhe, WANG Shu-fei, YANG Yi-xuan, CHEN Xin-ming. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill [J]. Journal of Cleaner Production, 2020, 245: 118882. DOI: https://doi.org/10.1016/j.jclepro.2019.118882.

    Article  Google Scholar 

  16. HE Yan, ZHANG Qin-li, CHEN Qiu-song, BIAN Ji-wei, QI Chong-chong, KANG Qian, FENG Yan. Mechanical and environmental characteristics of cemented paste backfill containing lithium slag-blended binder [J]. Construction and Building Materials, 2021, 271: 121567. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121567.

    Article  Google Scholar 

  17. WU Di, CAI Si-jing, HUANG Gang. Coupled effect of cement hydration and temperature on rheological properties of fresh cemented tailings backfill slurry [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(9): 2954–2963. DOI: https://doi.org/10.1016/S1003-6326(14)63431-2.

    Article  Google Scholar 

  18. CHENG Hai-yong, WU Shun-chuan, LI Hong, ZHANG Xiao-qiang. Influence of time and temperature on rheology and flow performance of cemented paste backfill [J]. Construction and Building Materials, 2020, 231: 117117. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117117.

    Article  Google Scholar 

  19. WANG Yong, WU Ai-xiang, RUAN Zhu-en, WANG Hong-jiang, WANG Yi-ming, JIN Fei. Temperature effects on rheological properties of fresh thickened copper tailings that contain cement [J]. Journal of Chemistry, 2018: 5082636. DOI: https://doi.org/10.1155/2018/5082636.

  20. FERNÀNDEZ-ALTABLE V, CASANOVA I. Influence of mixing sequence and superplasticiser dosage on the rheological response of cement pastes at different temperatures [J]. Cement and Concrete Research, 2006, 36(7): 1222–1230. DOI: https://doi.org/10.1016/j.cemconres.2006.02.016.

    Article  Google Scholar 

  21. NEHDI M, AL MARTINI S. Effect of temperature on oscillatory shear behavior of Portland cement paste incorporating chemical admixtures [J]. Journal of Materials in Civil Engineering, 2007, 19(12): 1090–1100. DOI: https://doi.org/10.1061/(asce)0899-1561(2007)19:12(1090).

    Article  Google Scholar 

  22. PETIT J Y, KHAYAT K H, WIRQUIN E. Coupled effect of time and temperature on variations of yield value of highly flowable mortar [J]. Cement and Concrete Research, 2006, 36(5): 832–841. DOI: https://doi.org/10.1016/j.cemconres.2005.11.001.

    Article  Google Scholar 

  23. PETIT J Y, WIRQUIN E, KHAYAT K H. Effect of temperature on the rheology of flowable mortars [J]. Cement and Concrete Composites, 2010, 32(1): 43–53. DOI: https://doi.org/10.1016/j.cemconcomp.2009.10.003.

    Article  Google Scholar 

  24. FRANKS G V. Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: Isoelectric point shift and additional attraction [J]. Journal of Colloid and Interface Science, 2002, 249(1): 44–51. DOI: https://doi.org/10.1006/jcis.2002.8250.

    Article  Google Scholar 

  25. KASHANI A, PROVIS J L, QIAO G G, VAN DEVENTER J S J. The interrelationship between surface chemistry and rheology in alkali activated slag paste [J]. Construction and Building Materials, 2014, 65: 583–591. DOI: https://doi.org/10.1016/j.conbuildmat.2014.04.127.

    Article  Google Scholar 

  26. CIHANGIR F, AKYOL Y. Effect of desliming of tailings on the fresh and hardened properties of paste backfill made from alkali-activated slag [J]. Advances in Materials Science and Engineering, 2020: 4536257. DOI: https://doi.org/10.1155/2020/4536257.

  27. AZARIJAFARI H, KAZEMIAN A, AHMADI B, BERENJIAN J, SHEKARCHI M. Studying effects of chemical admixtures on the workability retention of zeolitic Portland cement mortar [J]. Construction and Building Materials, 2014, 72: 262–269. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.020.

    Article  Google Scholar 

  28. MA Bao-guo, PENG Yi, TAN Hong-bo, JIAN Shou-wei, ZHI Zhen-zhen, GUO Yu-lin, QI Hua-hui, ZHANG Ting, HE Xing-yang. Effect of hydroxypropyl-methyl cellulose ether on rheology of cement paste plasticized by polycarboxylate superplasticizer [J]. Construction and Building Materials, 2018, 160: 341–350. DOI: https://doi.org/10.1016/j.conbuildmat.2017.11.010.

    Article  Google Scholar 

  29. BELLOTTO M. Cement paste prior to setting: A rheological approach [J]. Cement and Concrete Research, 2013, 52: 161–168. DOI: https://doi.org/10.1016/j.cemconres.2013.07.002.

    Article  Google Scholar 

  30. BISHOP M, BARRON A R. Cement hydration inhibition with sucrose, tartaric acid, and lignosulfonate: Analytical and spectroscopic study [J]. Industrial & Engineering Chemistry Research, 2006, 45(21): 7042–7049. DOI: https://doi.org/10.1021/ie060806t.

    Article  Google Scholar 

  31. LEONAVIČIUS D, PUNDIENĖ I, PRANCKEVIČIENĖ J, KLIGYS M. Selection of superplasticisers for improving the rheological and mechanical properties of cement paste with CNTs [J]. Construction and Building Materials, 2020, 253: 119182. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119182.

    Article  Google Scholar 

  32. TIAN Hong-wei, KONG Xiang-ming, SU Tong, WANG Dong-min. Comparative study of two PCE superplasticizers with varied charge density in Portland cement and sulfoaluminate cement systems [J]. Cement and Concrete Research, 2019, 115: 43–58. DOI: https://doi.org/10.1016/j.cemconres.2018.10.003.

    Article  Google Scholar 

  33. CHEN Xin, SHI Xiu-zhi, ZHOU Jian, YU Zhi, HUANG Pei-sheng. Determination of mechanical, flowability, and microstructural properties of cemented tailings backfill containing rice straw [J]. Construction and Building Materials, 2020, 246: 118520. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118520.

    Article  Google Scholar 

  34. CHEN Qiu-song, ZHANG Qin-li, QI Chong-chong, FOURIE A, XIAO Chong-chun. Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact [J]. Journal of Cleaner Production, 2018, 186: 418–429. DOI: https://doi.org/10.1016/jjclepro.2018.03.131.

    Article  Google Scholar 

  35. PANCHAL S, DEB D, SREENIVAS T. Variability in rheology of cemented paste backfill with hydration age, binder and superplasticizer dosages [J]. Advanced Powder Technology, 2018, 29(9): 2211–2220. DOI: https://doi.org/10.1016/j.apt.2018.06.005.

    Article  Google Scholar 

  36. Changsha Water Group Co., Ltd. Monthly report of routine water quality index of water plant [EB/OL]. [2019-08-26]. http://www.supplywater.com/tstz-79-43.aspx. (in Chinese)

  37. HAGER I. Behaviour of cement concrete at high temperature [J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61(1): 145–154. DOI: https://doi.org/10.2478/bpasts-2013-0013.

    Article  Google Scholar 

  38. MIRZA J, SALEH K, LANGEVIN M A, MIRZA S, BHUTTA M A R, TAHIR M M. Properties of microfine cement grouts at 4 °C, 10 °C and 20 °C [J]. Construction and Building Materials, 2013, 47: 1145–1153. DOI: https://doi.org/10.1016/j.conbuildmat.2013.05.026.

    Article  Google Scholar 

  39. FEI Jiang-chi, MIN Xiao-bo, WANG Zhen-xing, PANG Zhi-hua, LIANG Yan-jie, KE Yong. Health and ecological risk assessment of heavy metals pollution in an antimony mining region: A case study from South China [J]. Environmental Science and Pollution Research, 2017, 24(35): 27573–27586. DOI: https://doi.org/10.1007/s11356-017-0310-x.

    Article  Google Scholar 

  40. WU Di, DENG Teng-fei, ZHAO Run-kang. A coupled THMC modeling application of cemented coal gangue-fly ash backfill [J]. Construction and Building Materials, 2018, 158: 326–336. DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.009.

    Article  Google Scholar 

  41. WU Di, SUN Guang-hua, LIU Yu-cheng. Modeling the thermo-hydro-chemical behavior of cemented coal gangue-fly ash backfill [J]. Construction and Building Materials, 2016, 111: 522–528. DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.179.

    Article  Google Scholar 

  42. IPAVEC A, VUK T, GABROVŠEK R, KAUČIČ V. Chloride binding into hydrated blended cements: The influence of limestone and alkalinity [J]. Cement and Concrete Research, 2013, 48: 74–85. DOI: https://doi.org/10.1016/j.cemconres.2013.02.010.

    Article  Google Scholar 

  43. WANG Ke-jin, SHAH S P, MISHULOVICH A. Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders [J]. Cement and Concrete Research, 2004, 34(2): 299–309. DOI: https://doi.org/10.1016/j.cemconres.2003.08.003.

    Article  Google Scholar 

  44. WANG Yong, WU Ai-xiang, RUAN Zhu-en, WANG Zhi-hui, WEI Zong-su, YANG Gang-feng, WANG Yi-ming. Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process [J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1430–1437. DOI: https://doi.org/10.1007/s12613-020-2116-y.

    Article  Google Scholar 

  45. ASSAAD J J, HARB J, MAALOUF Y. Effect of vane configuration on yield stress measurements of cement pastes [J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 230: 31–42. DOI: https://doi.org/10.1016/jjnnfm.2016.01.002.

    Article  Google Scholar 

  46. SAAK A W, JENNINGS H M, SHAH S P. A generalized approach for the determination of yield stress by slump and slump flow [J]. Cement and Concrete Research, 2004, 34(3): 363–371. DOI: https://doi.org/10.1016/j.cemconres.2003.08.005.

    Article  Google Scholar 

  47. BARNES H A, NGUYEN Q D. Rotating vane rheometry—A review [J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 98(1): 1–14. DOI: https://doi.org/10.1016/S0377-0257(01)00095-7.

    Article  MATH  Google Scholar 

  48. YUAN Qiang, ZHOU Da-jun, KHAYAT K H, FEYS D, SHI Cai-jun. On the measurement of evolution of structural buildup of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test [J]. Cement and Concrete Research, 2017, 99: 183–189. DOI: https://doi.org/10.1016/j.cemconres.2017.05.014.

    Article  Google Scholar 

  49. FEYS D, VERHOEVEN R, DE SCHUTTER G. Fresh self compacting concrete, a shear thickening material [J]. Cement and Concrete Research, 2008, 38(7): 920–929. DOI: https://doi.org/10.1016/j.cemconres.2008.02.008.

    Article  Google Scholar 

  50. LUZ A P, PANDOLFELLI V C. Halting the calcium aluminate cement hydration process [J]. Ceramics International, 2011, 37(8): 3789–3793. DOI: https://doi.org/10.1016/j.ceramint.2011.06.034.

    Article  Google Scholar 

  51. DANNER T, JUSTNES H, GEIKER M, LAUTEN RA. Phase changes during the early hydration of Portland cement with Ca-lignosulfonates [J]. Cement and Concrete Research, 2015, 69: 50–60. DOI: https://doi.org/10.1016/j.cemconres.2014.12.004.

    Article  Google Scholar 

  52. FENG Yan, CHEN Qiu-song, ZHOU Yan-long, YANG Qi-xing, ZHANG Qin-li, JIANG Liang, GUO Hong-quan. Modification of glass structure via CaO addition in granulated copper slag to enhance its pozzolanic activity [J]. Construction and Building Materials, 2020, 240: 117970. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117970.

    Article  Google Scholar 

  53. CHEN Yan-yan, FURMANN A, MASTALERZ M, SCHIMMELMANN A. Quantitative analysis of shales by KBr-FTIR and micro-FTIR [J]. Fuel, 2014, 116: 538–549. DOI: https://doi.org/10.1016/j.fuel.2013.08.052.

    Article  Google Scholar 

  54. CHEN Xin, SHI Xiu-zhi, ZHANG Shu, CHEN Hui, ZHOU Jian, YU Zhi, HUANG Pei-sheng. Fiber-reinforced cemented paste backfill: The effect of fiber on strength properties and estimation of strength using nonlinear models [J]. Materials, 2020, 13(3): 718. DOI: https://doi.org/10.3390/ma13030718.

    Article  Google Scholar 

  55. JIANG Guan-zhao, WU Ai-xiang, WANG Yi-ming, LI Jian-qiu. The rheological behavior of paste prepared from hemihydrate phosphogypsum and tailing [J]. Construction and Building Materials, 2019, 229: 116870. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116870.

    Article  Google Scholar 

  56. CHEN Qiu-song, SUN Shi-yuan, LIU Yi-kai, QI Chong-chong, ZHOU Hui-bo, ZHANG Qin-li. Experimental and numerical study on immobilization and leaching characteristics of fluoride from phosphogypsum based cemented paste backfill [J]. International Journal of Minerals, Metallurgy and Materials, 2021. DOI: https://doi.org/10.1007/s12613-021-2274-6.

  57. ROSHANI A, FALL M. Rheological properties of cemented paste backfill with nano-silica: Link to curing temperature [J]. Cement and Concrete Composites, 2020, 114: 103785. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103785.

    Article  Google Scholar 

  58. BETIOLI A M, HOPPE FILHO J, CINCOTTO M A, GLEIZE P J P, PILEGGI R G. Chemical interaction between EVA and Portland cement hydration at early-age [J]. Construction and Building Materials, 2009, 23(11): 3332–3336. DOI: https://doi.org/10.1016/j.conbuildmat.2009.06.033.

    Article  Google Scholar 

  59. ZATTA L, GARDOLINSKI J E F D C, WYPYCH F. Raw halloysite as reusable heterogeneous catalyst for esterification of lauric acid [J]. Applied Clay Science, 2011, 51(1, 2): 165–169. DOI: https://doi.org/10.1016/j.clay.2010.10.020.

    Article  Google Scholar 

  60. ZAJAC M, SKOCEK J, DURDZINSKI P, BULLERJAHN F, SKIBSTED J, BEN HAHA M. Effect of carbonated cement paste on composite cement hydration and performance [J]. Cement and Concrete Research, 2020, 134: 106090. DOI: https://doi.org/10.1016/j.cemconres.2020.106090.

    Article  Google Scholar 

  61. KUMAR A, SANT G, PATAPY C, GIANOCCA C, SCRIVENER K L. The influence of sodium and potassium hydroxide on alite hydration: Experiments and simulations [J]. Cement and Concrete Research, 2012, 42(11): 1513–1523. DOI: https://doi.org/10.1016/j.cemconres.2012.07.003.

    Article  Google Scholar 

  62. MOTA B, MATSCHEI T, SCRIVENER K. Impact of NaOH and Na2SO4 on the kinetics and microstructural development of white cement hydration [J]. Cement and Concrete Research, 2018, 108: 172–185. DOI: https://doi.org/10.1016/j.cemconres.2018.03.017.

    Article  Google Scholar 

  63. ALONSO S, PALOMO A. Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures [J]. Cement and Concrete Research, 2001, 31(1): 25–30. DOI: https://doi.org/10.1016/S0008-8846(00)00435-X.

    Article  Google Scholar 

  64. BAKHAREV T, SANJAYAN J G, CHENG Y B. Resistance of alkali-activated slag concrete to carbonation [J]. Cement and Concrete Research, 2001, 31(9): 1277–1283. DOI: https://doi.org/10.1016/S0008-8846(01)00574-9.

    Article  Google Scholar 

  65. EL-ALFI E A, GADO R A. Preparation of calcium sulfoaluminate-belite cement from marble sludge waste [J]. Construction and Building Materials, 2016, 113: 764–772. DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.103.

    Article  Google Scholar 

  66. GARCÍA LODEIRO I, MACPHEE D E, PALOMO A, FERNÁNDEZ-JIMÉNEZ A. Effect of alkalis on fresh C-S-H gels. FTIR analysis [J]. Cement and Concrete Research, 2009, 39(3): 147–153. DOI: https://doi.org/10.1016/j.cemconres.2009.01.003.

    Article  Google Scholar 

  67. ELKHADIRI I, PALACIOS M, PUERTAS F. Effect of curing temperatura on hydration process of different cement [J]. Ceramics-Silikaty. 2009, 53: 65–75.

    Google Scholar 

  68. VARAS M J, ALVAREZ DE BUERGO M, FORT R. Natural cement as the precursor of Portland cement: Methodology for its identification [J]. Cement and Concrete Research, 2005, 35(11): 2055–2065. DOI: https://doi.org/10.1016/j.cemconres.2004.10.045.

    Article  Google Scholar 

  69. YLMÉN R, JÄGLID U. Carbonation of Portland cement studied by diffuse reflection Fourier transform infrared spectroscopy [J]. International Journal of Concrete Structures and Materials, 2013, 7(2): 119–125. DOI: https://doi.org/10.1007/s40069-013-0039-y.

    Article  Google Scholar 

  70. KAPELUSZNA E, KOTWICA L, RÓZYCKA A, GOŁEK Ł. Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis [J]. Construction and Building Materials, 2017, 155: 643–653. DOI: https://doi.org/10.1016/j.conbuildmat.2017.08.091.

    Article  Google Scholar 

  71. DONATELLO S, PALOMO A, FERNÁNDEZ-JIMÉNEZ A. Durability of very high volume fly ash cement pastes and mortars in aggressive solutions [J]. Cement and Concrete Composites, 2013, 38: 12–20. DOI: https://doi.org/10.1016/j.cemconcomp.2013.03.001.

    Article  Google Scholar 

  72. PAJARES I, MARTíNEZ-RAMíREZ S, BLANCO-VARELA M T. Evolution of ettringite in presence of carbonate, and silicate ions [J]. Cement and Concrete Composites, 2003, 25(8): 861–865. DOI: https://doi.org/10.1016/S0958-9465(03)00113-6.

    Article  Google Scholar 

  73. WANG Dao-lin, ZHANG Qin-li, CHEN Qiu-song, QI Chong-chong, FENG Yan, XIAO Chong-chun. Temperature variation characteristics in flocculation settlement of tailings and its mechanism [J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1438–1448. DOI: https://doi.org/10.1007/s12613-020-2022-3.

    Article  Google Scholar 

  74. CHEN Sheng-li, SUN Shen-mei, CHEN Xiao-long, ZHONG Kai-hong, SHAO Qiang, XU Hai-jun, WEI Jiang-xiong. Effects of core-shell polycarboxylate superplasticizer on the fluidity and hydration behavior of cement paste [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590: 124464. DOI: https://doi.org/10.1016/j.colsurfa.2020.124464.

    Article  Google Scholar 

  75. JAKOB C, JANSEN D, UKRAINCZYK N, KOENDERS E, POTT U, STEPHAN D, NEUBAUER J. Relating ettringite formation and rheological changes during the initial cement hydration: A comparative study applying XRD analysis, rheological measurements and modeling [J]. Materials (Basel, Switzerland), 2019, 12(18): E2957. DOI: https://doi.org/10.3390/ma12182957.

    Article  Google Scholar 

  76. JIAO Deng-wu, SHI Cai-jun, YUAN Qiang, AN Xiao-peng, LIU Yu, LI Huang. Effect of constituents on rheological properties of fresh concrete-A review [J]. Cement and Concrete Composites, 2017, 83: 146–159. DOI: https://doi.org/10.1016/j.cemconcomp.2017.07.016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-song Chen  (陈秋松).

Additional information

Foundation item

Project(2019zzts678) supported by the Fundamental Research Funds for the Central Universities, China

Contributors

ZHANG Qin-li and CHEN Qiu-song provided the concept. LI Yi-teng wrote the first draft of the manuscript. FENG Yan provided the analysis methods. LIU Yi-kai and WANG Dao-lin edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

ZHANG Qin-li, LI Yi-teng, CHEN Qiu-song, LIU Yi-kai, FENG Yan and WANG Dao-lin declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Ql., Li, Yt., Chen, Qs. et al. Effects of temperatures and pH values on rheological properties of cemented paste backfill. J. Cent. South Univ. 28, 1707–1723 (2021). https://doi.org/10.1007/s11771-021-4728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4728-4

Key words

关键词

Navigation