Skip to main content
Log in

Arsenic availability and transportation in soil-rice system affected by iron-modified biochar

铁改性生物炭对土壤-水稻系统中砷有效性和迁移的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Iron-modified biochar (FeOS) is known to be effective at immobilization of arsenic (As) in soils. A pot experiment was conducted to investigate the effects of FeOS on As availability and ttransportation in the soil-rice system at different growth stages of rice with different pollution levels. The results showed that Fe concentration decreased and As concentration increased in paddy soils with the FeOS addition, especially in 120 mg/kg As treatment, the As concentration decreased by 16.46% and 30.56% at the maturity stage with 0.5% and 1% FeOS additions, respectively. Compared with the control, the application of FeOS reduced the arsenic content in rice tissues and increased the biomass, with the root biomass increased by 12.68% and the shoot biomass was increased by 8.94% with the addition of 1% FeOS. This may be related to the promotion of iron plaque formation and the transformation of microbial community structure in FeOS treatments, in accordance with the result of gene abundance and Fe/As contents of iron plaque in the study. This study is expected to provide further support and theoretical basis for the application of FeOS in the remediation of As contaminated paddy soil.

摘要

铁改性生物炭(FeOS)能有效地促进土壤中砷的固定。本文通过盆栽实验研究了铁改性生物炭对砷在土壤-水稻系统中有效性和迁移的影响。本实验研究了不同砷污染水平下, 施用铁改性生物炭对水稻土壤溶液, 铁膜中砷和铁的含量的影响, 以及对水稻根, 茎生物量和砷积累量的影响。结果表明, 施用铁氧化物提高了土壤溶液中铁的浓度, 降低了砷的浓度; 特别是在120 mg/kg As 处理中, 添加0.5%和1% FeOS 后, 成熟期砷浓度分别降低16.46%和30.56%。与对照相比, 施用FeOS 降低了水稻组织中的砷含量, 增加了水稻根和茎的生物量。添加1% FeOS 后, 水稻根系生物量增加12.68%, 地上部生物量增加8.94%。这可能与FeOS 的添加促进了铁膜形成和微生物群落结构的转变有关, 与本实验中土壤的铁砷相关基因丰度和铁膜的铁含量所呈现的结果一致。该研究可为FeOS 在砷污染水稻土修复中的应用提供进一步的支持和理论依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. PAN Wei-song, WU Chuan, XUE Sheng-guo, HARTLEY W. Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation [J]. Journal of Environmental Sciences, 2014, 26(4): 892–899. DOI: https://doi.org/10.1016/S1001-0742(13)60483-0.

    Article  Google Scholar 

  2. WU Chuan, ZOU Qi, XUE Sheng-guo, PAN Wei-song, YUE Xu, HARTLEY W, HUANG Liu, MO Jing-yu. Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants [J]. Chemosphere, 2016, 165: 478–486. DOI: https://doi.org/10.1016/j.chemosphere.2016.09.061.

    Article  Google Scholar 

  3. SINGH R, SINGH S, PARIHAR P, SINGH V P, PRASAD S M. Arsenic contamination, consequences and remediation techniques: A review [J]. Ecotoxicology and Environmental Safety, 2015, 112: 247–270. DOI: https://doi.org/10.1016/j.ecoenv.2014.10.009.

    Article  Google Scholar 

  4. MEHARG A A, RAHMAN M. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption [J]. Environmental Science & Technology, 2003, 37(2): 229–234.

    Article  Google Scholar 

  5. LI R Y, STROUD J L, MA J F, MCGRATH S P, ZHAO F J. Mitigation of arsenic accumulation in rice with water management and silicon fertilization [J]. Environmental Science & Technology, 2009, 43(10): 3778–3783. DOI: https://doi.org/10.1021/es803643v.

    Article  Google Scholar 

  6. WU Chuan, ZOU Qi, XUE Sheng-guo, PAN Wei-song, HUANG Liu, HARTLEY W, MO Jing-yu, WONG Ming-hung. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL) [J]. Environmental Pollution, 2016, 212: 27–33. DOI: https://doi.org/10.1016/j.envpol.2016.01.004.

    Article  Google Scholar 

  7. WU Chuan, SHI Li-zheng, XUE Sheng-guo, LI Wai-chin, JIANG Xing-xing, RAJENDRAN M, QIAN Zi-yan. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils [J]. Science of the Total Environment, 2019, 647: 1158–1168. DOI: https://doi.org/10.1016/j.scitotenv.2018.08.087.

    Article  Google Scholar 

  8. WANG Jun, CHENG Qing-yu, XUE Sheng-guo, RAJENDRAN M, WU Chuan, LIAO Jia-xin. Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland [J]. Environmental Science and Pollution Research, 2018, 25(10): 9998–10005. DOI: https://doi.org/10.1007/s11356-018-1338-2.

    Article  Google Scholar 

  9. CUI Meng-qian, WU Chuan, JIANG Xing-xing, LIU Zi-yu, XUE Sheng-guo. Bibliometric analysis of research on soil arsenic during 2005–2016 [J]. Journal of Central South University, 2019, 26(2): 479–488. DOI: https://doi.org/10.1007/s11771-019-4020-z.

    Article  Google Scholar 

  10. XUE Sheng-guo, SHI Li-zheng, WU Chuan, WU Hui, QIN Yan-yan, PAN Wei-song, HARTLEY W, CUI Meng-qian. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines [J]. Environmental Research, 2017, 156: 23–30. DOI: https://doi.org/10.1016/j.envres.2017.03.014.

    Article  Google Scholar 

  11. QIAO Jiang-tao, LI Xiao-min, LI Fang-bai. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar [J]. Journal of Hazardous Materials, 2018, 344: 958–967. DOI: https://doi.org/10.1016/j.jhazmat.2017.11.025.

    Article  Google Scholar 

  12. RAJENDRAN M, AN Wen-hui, LI Wai-chin, PERUMAL V, WU Chuan, SAHI S V, SARKAR S K. Chromium detoxification mechanism induced growth and antioxidant responses in vetiver (Chrysopogon zizanioides(L.) Roberty) [J]. Journal of Central South University, 2019, 26(2): 489–500. DOI: https://doi.org/10.1007/s11771-019-4021-y.

    Article  Google Scholar 

  13. WU Chuan, HUANG Liu, XUE Sheng-guo, PAN Wei-song, ZOU Qi, HARTLEY W, WONG Ming-hung. Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice [J]. Chemosphere, 2017, 168: 969–975. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.114.

    Article  Google Scholar 

  14. SU Hui-jie, FANG Zhan-qian, TSANG P E, FANG Jian-zhang, ZHAO Dong-ye. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil [J]. Environmental Pollution, 2016, 214: 94–100. DOI: https://doi.org/10.1016/j.envpol.2016.03.072.

    Article  Google Scholar 

  15. AHMAD M, RAJAPAKSHA A U, LIM J E, ZHANG M, BOLAN N, MOHAN D, VITHANAGE M, LEE S S, OK Y S. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99(3): 19–33. DOI: https://doi.org/10.1016/j.chemosphere.2013.10.071.

    Article  Google Scholar 

  16. VITHANAGE M, HERATH I, JOSEPH S, BUNDSCHUH J, BOLAN N, OK Y S, KIRKHAM M B, RINKLEBE J. Interaction of arsenic with biochar in soil and water: A critical review [J]. Carbon, 2017, 113: 219–230. DOI: https://doi.org/10.1016/j.chemosphere.2013.10.071.

    Article  Google Scholar 

  17. SMEBYE A, ALLING V, VOGT R D, GADMAR T C, MULDER J. Biochar amendment to soil changes dissolved organic matter content and composition [J]. Chemosphere, 2015, 142: 100–105. DOI: https://doi.org/10.1016/j.chemosphere.2015.04.087.

    Article  Google Scholar 

  18. WANG Ning, XUE Xi-xie, JUHASZ A L, CHANG Zhi-zhou, LI Hong-bo. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic [J]. Environmental Pollution, 2017, 220: 514–522. DOI: https://doi.org/10.1016/j.envpol.2016.09.095.

    Article  Google Scholar 

  19. BEESLEY L, MARMIROLI M, PAGANO L, PIGONI V, FELLET G, FRESNO T, VAMERALI T, BANDIERA M, MARMIROLI N. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanumlycopersicum L.) [J]. Science of the Total Environment, 2013, 454–455(5): 598–603. DOI: https://doi.org/10.1016/j.scitotenv2013.02.047.

    Article  Google Scholar 

  20. RAJENDRAN M, SHI Li-zheng, WU Chuan, LI Wai-chin, AN Wen-hui, LIU Zi-yu, XUE Sheng-guo. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system [J]. Chemosphere, 2019, 222: 314–322. DOI: https://doi.org/10.1016/j.chemosphere.2019.01.149.

    Article  Google Scholar 

  21. XU Yan-zhe, FANG Zhan-qing, TSANG E P. In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles [J]. Environmental Science and Pollution Research, 2016, 23: 19164–19172. DOI: https://doi.org/10.1007/s11356-016-7117-z.

    Article  Google Scholar 

  22. WANG Shen-sen, GAO Bin, ZIMMERMAN A R, LI Yun-cong, MA Le-na, HARRIS W G, MIGLIACCIO K W. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite [J]. Bioresource Technology, 2015, 175: 391–395. DOI: https://doi.org/10.1016/j.biortech.2014.10.104.

    Article  Google Scholar 

  23. YAN X L, LIN L Y, LIAO X Y, ZHANG W B, WEN Y. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng [J]. Chemosphere, 2013, 93(4): 661–667. DOI: https://doi.org/10.1016/j.chemosphere.2013.05.083.

    Article  Google Scholar 

  24. YANG Zhi-hui, LIU Lin, CHAI Li-yuan, LIAO Ying-ping, YAO Wen-bin, XIAO Rui-yang. Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate [J]. Environmental Science and Pollution Research, 2015, 22: 12624–12632. DOI: https://doi.org/10.1007/s11356-015-4455-1.

    Article  Google Scholar 

  25. WU Chuan, CUI Meng-qian, XUE Sheng-guo, LI Wai-chin, HUANG Liu, JIANG Xing-xing, QIAN Zi-yan. Remediation of arsenic-contaminated paddy soil by iron-modified biochar [J]. Environmental Science and Pollution Research, 2018, 25: 20792–20801. DOI: https://doi.org/10.1007/s11356-018-2268-8.

    Article  Google Scholar 

  26. WU Chuan, WANG Qiong-li, XUE Sheng-guo, PAN Wei-song, LOU Lai-qing, LI Dao-jun, HARTLEY W. Do aeration conditions affect arsenic andphosphate accumulation and phosphate transporter expression in rice (Oryza sativa L.)? [J]. Environmental Science and Pollution Research, 2018, 25(1): 43–51. DOI: https://doi.org/10.1007/s11356-016-7976-3.

    Article  Google Scholar 

  27. FITZ W J, WENZEL W W. Arsenic transformation in the soil-rhizosphere-plant system: Fundamentals and potential application to phytoremediation [J]. Journal of Biotechnology, 2002, 99(3): 259–278. DOI: https://doi.org/10.1016/S0168-1656(02)00218-3.

    Article  Google Scholar 

  28. ZHU Feng, CHENG Qing-yu, XUE Sheng-guo, LI Chu-xuan, HARTLEY W, WU Chuan, TIAN Tao. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation & Development, 2018, 29: 138–149. DOI: https://doi.org/10.1002/ldr.2848.

    Article  Google Scholar 

  29. SUN Y M, POLISHCHUK E A, RADOJA U, CULLEN W R. Identification and quantification of arsC genes in environmental samples by using real-time PCR [J]. Journal of Microbiological Methods, 2004, 58: 335–349. DOI: https://doi.org/10.1016/j.mimet.2004.04.015.

    Article  Google Scholar 

  30. JIA Yan, HUANG Hai, ZHONG Min, WANG Feng-hua, ZHANG Li-mei, ZHU Yong-guan. Microbial arsenic methylation in soil and rice rhizosphere [J]. Environmental Science & Technology, 2013, 47: 3141–3148. DOI: https://doi.org/10.1021/es303649v.

    Article  Google Scholar 

  31. SOMENAHALLY A C, HOLLISTER E B, LOEPPERT R H, YAN W G, GENTRY T J. Microbial communities in rice rhizosphere altered by intermittent and continuous flooding in fields with long-term arsenic application [J]. Science of the Total Environment, 2011, 43: 1220–1228. DOI: https://doi.org/10.1016/j.soilbio.2011.02.011.

    Google Scholar 

  32. LEE C, HSIEH Y, LIN T, LEE D. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice [J]. Plant and Soil, 2013, 363(1, 2): 231–241. DOI: https://doi.org/10.1007/s11104-012-1308-2.

    Article  Google Scholar 

  33. SYU C H, JIANG P Y, HUANG H H, CHEN W T, LIN T H, LEE D Y. Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter [J]. Soil Science and Plant Nutrition, 2013, 59(3): 463–471. DOI: https://doi.org/10.1080/00380768.2013.784950.

    Article  Google Scholar 

  34. VARAPRASAD B, DAUGHTRY C S, CODLING E E, HANSEN D Y, SUSAN W H, GREEN C E. Evaluating leaf and canopy reflectance of stressed rice plants to monitor arsenic contamination [J]. International Journal of Environmental Research and Public Health, 2016, 13(6): 606–621. DOI: https://doi.org/10.3390/ijerph13060606.

    Article  Google Scholar 

  35. RAHMAN M A, HASEGAWA H, RAHMAN M M, ISLAM M N, MIAH M A M, TASMEN A. Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh [J]. Chemosphere, 2007, 67: 1072–1079. DOI: https://doi.org/10.1016/j.chemosphere.2006.11.061.

    Article  Google Scholar 

  36. KIM H B, KIM S H, JEON E K, KIM D H, TSANG D C W, ALESSI D S, KWON E E, BAEK K. Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil [J]. Science of the Total Environment, 2018, 636: 1241–1248. DOI: https://doi.org/10.1016/j.scitotenv.2018.04.406.

    Article  Google Scholar 

  37. CUI Da-lian, MA Yu-xin, PANG Cai-jiu, DING Xue-jiao. The effects of Zn2+, Cd2+ Pollution on physiological and biochemical characters of Sesbania Cannabina Pers [C]. Advanced Materials Research, 2012, 6: 518–523. DOI: https://doi.org/10.4028/u]www.scientific.net/AMR.518-523.2039.

    Google Scholar 

  38. JR V U U, NAKAYAMA A, TANAKA S, KANG Y, SAKURAI K, IWASAKI K. Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr)oxide amendments [J]. Soil Science and Plant Nutrition, 2010, 55(1): 160–169. DOI: https://doi.org/10.1111/j.1747-0765.2008.00341.x.

    Google Scholar 

  39. TAO S, CHEN Y J, XU F L, CAO J, LI B G. Changes of copper speciation in maize rhizosphere soil [J]. Environmental Pollution, 2003, 122(3): 447–454. DOI: https://doi.org/10.1016/S0269-7491(02)00313-5.

    Article  Google Scholar 

  40. DAKORA F D, PHILLIPS D A. Root exudates as mediators of mineral acquisition in low-nutrient environments [J]. Plant and Soil, 2002, 245(1): 201–213. DOI: https://doi.org/10.1023/A:1020809400075.

    Article  Google Scholar 

  41. GOLDBERG S. Competitive adsorption of arsenate and arsenite on oxides and clay minerals [J]. Soil Science Society of America Journal, 2002, 66: 413–421. DOI: https://doi.org/10.2136/sssaj2002.4130.

    Article  Google Scholar 

  42. CHEN Zheng, WANG Yuan-peng, XIA Dong, JIANG Xiu-li, FU Dun, SHEN Liang, WANG Hai-tao, LI Qing-biao. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition [J]. Journal of Hazardous Materials, 2016, 311: 20–29. DOI: https://doi.org/10.1016/j.jhazmat.2016.02.069.

    Article  Google Scholar 

  43. OUYANG Bing-jie, LU Xian-cai, LIU Huan, LI Juan, ZHU Ting-ting, ZHU Xiang-yu, LU Jian-jun, WANG Ru-cheng. Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization [J]. Geochimica et Cosmochimica Acta, 2014, 124(1): 54–71. DOI: https://doi.org/10.1016/j.gca.2013.09.020.

    Google Scholar 

  44. YU Huan-yun, WANG Xiang-qin, LI Fang-bai, LI Bin, LIU Chuan-ping, WANG Qi, LEI Jing. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice [J]. Environmental Pollution, 2017, 224: 136–147. DOI: https://doi.org/10.1016/j.envpol.2017.01.072.

    Article  Google Scholar 

  45. ZHANG Jun, ZHOU Wu-xian, LIU Bing-bing, HE Jian, SHEN Qi-rong, ZHAO Fang-jie. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil [J]. Environmental Science & Technology, 2015, 49: 5956–5964. DOI: https://doi.org/10.1021/es506097c.

    Article  Google Scholar 

  46. GARNIER J M, TRAVASSAC F, LENOBLE V, ROSE J, ZHENG Y, HOSSAIN M S, CHOWDHURY S H, BISWAS A K, AHMED K M, CHENG Z, GEEN A V. Temporal variations in arsenic uptake by rice plants in Bangladesh: the role of iron plaque in paddy fields irrigated with groundwater [J]. Science of the Total Environment, 2010, 408(19): 4185–4193. DOI: https://doi.org/10.1016/j.scitotenv.2010.05.019.

    Article  Google Scholar 

  47. EHLERT K, MIKUTTA C, KRETZSCHMAR R. Mineralogical controls on the bioaccessibility of Arsenic in Fe(III)-As(V) coprecipitates [J]. Environmental Science & Technology, 2018, 52(2): 616–627. DOI: https://doi.org/10.1021/acs.est.7b05176.

    Article  Google Scholar 

  48. ZOU Qi, AN Wen-hui, WU Chuan, LI Wai-chin, FU An-qin, XIAO Rui-yang, CHEN Hui-kang, XUE Sheng-guo. Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition [J]. Environmental Chemistry Letters, 2018, 16: 615–622. DOI: https://doi.org/10.1007/s10311-017-0688-1.

    Article  Google Scholar 

  49. ZECCHIN S, CORSINI A, MARTIN M, ROMANI M, BEONE G M, ZANCHI R, ZANZO E, TENNI D, FONTANELLA M C, CAVALCA L. Rhizospheric iron and arsenic bacteria affected by water regime: Implications for metalloid uptake by rice [J]. Soil Biology & Biochemistry, 2017, 106: 129–137. DOI: https://doi.org/10.1016/j.soilbio.2016.12.021.

    Article  Google Scholar 

  50. XUE Sheng-guo, JIANG Xing-xing, WU Chuan, HARTLEY W, QIAN Zi-yan, LUO Xing-hua, LI Wai-chin. Microbial driven iron reduction affects arsenic transformation and transportation in soil-rice system [J]. Environmental Pollution, 2020, 260: 114010. DOI: https://doi.org/10.1016/j.envpol.2020.114010.

    Article  Google Scholar 

  51. QIAO Jiang-tao, LI Xiao-min, Hu Min, LI Fang-bai, YONG L Y, SUN Wei-min, HUANG Weinlin, CUI Jiang-hu. Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil [J]. Environmental Science & Technology, 2018, 52(1): 61–70. DOI: https://doi.org/10.1021/acs.est.7b03771.

    Article  Google Scholar 

  52. ZHAO Can-can, FU Sheng-lei, MATHEW R P, LAWRENCE K S, FENG Yu-cheng. Soil microbial community structure and activity in a 100-year-old fertilization and crop rotation experiment [J]. Journal of Plant Ecology, 2015, 8(6): 623–632. DOI: https://doi.org/10.1093/jpe/rtv007.

    Google Scholar 

  53. WU Chuan, AN Wen-hui, LIU Zi-yu, LIN Jun, QIAN Zi-yan, XUE Shen-gguo. The effects of biochar as the electron shuttle on the ferrihydrite reduction and related arsenic (As) fate [J]. Journal of Hazardous Materials, 2020, 390: 121391. DOI: https://doi.org/10.1016/j.jhazmat.2019.121391.

    Article  Google Scholar 

  54. SMITH E, JUHASZ A L, WEBER J, NAIDU R. Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water [J]. Science of the Total Environment, 2008, 392(2, 3): 277–283. DOI: https://doi.org/10.1016/j.scitotenv.2007.11.023.

    Article  Google Scholar 

  55. WEBB S M, GAILLARD J F, MA L Q, TU C. XAS speciation of arsenic in a hyper-accumulating fern [J]. Environmental Science & Technology, 2003, 37(4): 754–760. DOI: https://doi.org/10.1021/es0258475.

    Article  Google Scholar 

  56. RAAB A, WILLIAMS P N, MEHARG A, FELDMANN J. Uptake and translocation of inorganic and methylated arsenic species by plants [J]. Environmental Chemistry, 2007, 4: 197–203. DOI: https://doi.org/10.1071/EN06079.

    Article  Google Scholar 

  57. CAREY A M, SCHECKEL K G, LOMBI E, NEWVILLE M, CHOI Y, NORTON G J, CHARNOCK J M, FELDMANN J, PRICE A H, MEHARG A A. Grain unloading of arsenic species in rice [J]. Plant Physiology, 2010, 152: 309–319. DOI: https://doi.org/10.1104/pp.109.146126.

    Article  Google Scholar 

  58. ZHANG Chun-hua, GE Ying, YAO Huan, CHEN Xiao, HU Min-kun. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: A review [J]. Frontiers of Environmental Science & Engineering, 2012, 6(4): 509–517. DOI: https://doi.org/10.1007/s11783-012-0394-y.

    Article  Google Scholar 

  59. WU Chuan, ZOU Qi, XUE Sheng-guo, PAN Wei-song, HUANG Liu, HARTLEY W, MO Jing-yu, WONG Ming-huang. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL) [J]. Environmental Pollution, 2016, 212: 27–33. DOI: https://doi.org/10.1016/j.envpol.2016.01.004.

    Article  Google Scholar 

  60. HU Min, LI Fang-bai, LIU Chuan-ping, WU Wei-jian. The diversity and abundance of As(III) oxidizers on root iron plaque is critical for arsenic bioavailability to rice [J]. Scientific Reports, 2015, 5: 13611–13620. DOI: https://doi.org/10.1038/srep13611.

    Article  Google Scholar 

  61. LIU W J, ZHU Y G, HU Y, WILLIAMS P N, GAULT A G, MEHARG A A, CHARNOCK J M, SMITH F A. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza Sativa L.) [J]. Environmental Science & Technology, 2006, 40(18): 5730–5736. DOI: https://doi.org/10.1021/es060800v.

    Article  Google Scholar 

  62. XIAO An-wen, LI Wai-chin, YE Zhi-zhong. Effects of Fe-oxidizing bacteria (FeOB) on iron plaque formation, As concentrations and speciation in rice (Oryza sativa L.) [J]. Ecotoxicology and Environmental Safety, 2020, 190: 110136. DOI: https://doi.org/10.1016/j.ecoenv.2019.110136.

    Article  Google Scholar 

  63. LIN Li-na, GAO Min-ling, QIU Wei-wen, WANG Di, HUANG Qing, SONG Zheng-guo. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments [J]. Environmental Pollution, 2017, 231: 479–486. DOI: https://doi.org/10.1016/j.envpol.2017.08.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Wu  (吴川).

Additional information

Foundation item

Project(2019YFC1803601) supported by the National Key Research and Development Program of China; Project(41771512) supported by the National Natural Science Foundation of China; Project(2018RS3004) supported by Hunan Science & Technology Innovation Program, China

Contributors

The overarching research goals were developed WU Chuan, QIAN Zi-yan, and CUI Meng-qian. QIAN Zi-yan conducted the literature review, analyzed the data and wrote the first draft of the manuscript. XUE Sheng-guo guided the study, and reviewed the manuscript. CUI Meng-qian provided the experimental approaches and carried out experiments. WU Chuan reviewed the manuscript, and proposed some important advices. LI Wai-chin reviewed the manuscript.

Conflict of interest

QIAN Zi-yan, XUE Sheng-guo, CUI Meng-qian, WU Chuan, and LI Wai-chin declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Zy., Xue, Sg., Cui, Mq. et al. Arsenic availability and transportation in soil-rice system affected by iron-modified biochar. J. Cent. South Univ. 28, 1901–1918 (2021). https://doi.org/10.1007/s11771-021-4738-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4738-2

Key words

关键词

Navigation