Skip to main content
Log in

Dynamic evolution of shear rate-dependent behavior of rock discontinuity under shearing condition

剪切条件下结构面剪切速率依存性的动态演化

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Rock blocks sliding along discontinuities can cause serious disasters, such as landslides, earthquakes, or rock bursts. The shear rate-dependent behavior is a typical time-dependent behavior of a rock discontinuity, and it is closely related to the stability of a rock block. To further study the shear rate-dependent behavior of rock discontinuities, shear tests with alternating shear rates (SASRs) were conducted on rock discontinuities with various surface morphologies. The dynamic evolution of the shear rate dependency was studied in detail based on the shear test results, and three stages were identified with respect to the shear stress and shear deformation states. The test results revealed that dynamic changes in shear stiffness and the energy storage abilities of the rock discontinuities occurred in relation to the shear rate-dependent behavior of crack growth, which increased with an increase in normal stress and/or the joint roughness coefficient. The stage of decreasing shear stiffness corresponded to a stage of noticeable shear rate-dependency, and the shear rate was found to have no influence on the initial crack stress.

摘要

岩石块体沿结构面滑动会引发严重的灾害, 如滑坡, 地震或岩爆等。结构面的剪切速率依存性是一种典型时效特性, 它与岩体的稳定性密切相关。为了深入研究结构面的剪切速率依存特性, 对多种表面形态各异的结构面开展了交替变换剪切速率的剪切试验, 对剪切试验中剪切速率依存性的动态演化过程进行详细研究, 并根据剪切应力和剪切变形状态将其划分为三个阶段。结果表明, 结构面的剪切刚度和能量储存能力的动态演化与裂纹扩展的剪切速率依存性相关, 并随着法向应力和结构面粗糙度系数的增加而增加; 剪切速率依存性与剪切刚度降低阶段具有一致性, 但剪切速率大小对起裂应力没有影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. GOMBERG J, BEELER N M, BLANPIED M L, BODIN P. Earthquake triggering by transient and static deformations [J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B10): 24411–24426. DOI: https://doi.org/10.1029/98jb01125.

    Article  Google Scholar 

  2. OPPIKOFER T, JABOYEDOFF M, BLIKRA L, DERRON M H, METZGER R. Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning [J]. Natural Hazards and Earth System Sciences, 2009, 9(3): 1003–1019. DOI: https://doi.org/10.5194/nhess-9-1003-2009.

    Article  Google Scholar 

  3. ARAKI E, SAFFER D M, KOPF A J, WALLACE L M, KIMURA T, MACHIDA Y, IDE S, DAVIS E. Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust [J]. Science, 2017, 356(6343): 1157–1160. DOI: https://doi.org/10.1126/science.aan3120.

    Article  Google Scholar 

  4. JARAMILLO C A. Impact of seismic design on tunnels in rock-Case histories [J]. Underground Space, 2017, 2(2): 106–114. DOI: https://doi.org/10.1016/j.undsp.2017.03.004.

    Article  MathSciNet  Google Scholar 

  5. CHEN Bing-rui, FENG Xia-ting, MING Hua-jun, ZHOU Hui, ZENG Xiong-hui, FENG Guang-liang, XIAO Ya-xun. Evolution law and mechanism of rockburst in deep tunnel: Time delayed rockburst [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 561–569. (in Chinese)

    Google Scholar 

  6. BYKOV V G. Strain waves in the Earth: Theory, field data, and models [J]. Russian Geology and Geophysics, 2005, 46(11): 1176–1190.

    Google Scholar 

  7. FAHIMIFAR A, SOROUSH H. Effect of time on the stress-strain behaviour of a single rock joint [J]. Bulletin of Engineering Geology and the Environment, 2005, 64(4): 383–396. DOI: https://doi.org/10.1007/s10064-005-0003-4.

    Article  Google Scholar 

  8. PATERSON M S, WONG T F. Friction and sliding phenomena [M]// Experimental Rock Deformation—The Brittle Field. Berlin, Heidelberg: Springer-Verlag, 165–209. DOI: https://doi.org/10.1007/3-540-26339-x_8.

  9. BRACE W F, BYERLEE J D. Stick-slip as a mechanism for earthquakes [J]. Science, 1966, 153(3739): 990–992. DOI: https://doi.org/10.1126/science.153.3739.990.

    Article  Google Scholar 

  10. DIETERICH J H. Time-dependent friction in rocks [J]. Journal of Geophysical Research Atmospheres, 1972, 77(20): 3690–3697. DOI: https://doi.org/10.1029/jb077i020p03690.

    Article  Google Scholar 

  11. SCHOLZ C H. The mechanics of earthquakes and faulting [M]. Cambrige: Cambrige University Press, 1990, 17(1): 73–91. DOI: https://doi.org/10.1017/9781316681473.

    Google Scholar 

  12. REBER J E, HAYMAN N W, LAVIER L L. Stick-slip and creep behavior in lubricated granular material: Insights into the brittle-ductile transition [J]. Geophysical Research Letters, 2014, 41(10): 3471–3477. DOI: https://doi.org/10.1002/2014GL059832.

    Article  Google Scholar 

  13. JAFARI M K, AMINI HOSSEINI K, PELLET F, BOULON M, BUZZI O. Evaluation of shear strength of rock joints subjected to cyclic loading [J]. Soil Dynamics and Earthquake Engineering, 2003, 23(7): 619–630. DOI: https://doi.org/10.1016/S0267-7261(03)00063-0.

    Article  Google Scholar 

  14. MIRZAGHORBANALI A, NEMCIK J, AZIZ N. Effects of shear rate on cyclic loading shear behavior of rock joints under constant normal stiffness conditions [J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1931–1938. DOI: https://doi.org/10.1007/s00603-013-0453-0.

    Article  Google Scholar 

  15. ZHOU Hui, MENG Fan-zhen, ZHANG Chuan-qing, YANG Fan-jie, LU Jing-jing. The shear failure characteristic of the structural plane and its application in the study of slip rock burst [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1729–1738. DOI: https://doi.org/10.13722/j.cnki.jrme.2014.0337. (in Chinese)

    Google Scholar 

  16. CRAWFORD A M, CURRAN J H. The influence of shear velocity on the frictional resistance of rock discontinuities [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(6): 505–515. DOI: https://doi.org/10.1016/0148-9062(81)90514-3.

    Article  Google Scholar 

  17. ATAPOUR H, MOOSAVI M. The influence of shearing velocity on shear behavior of artificial joints [J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1745–1761. DOI: https://doi.org/10.1007/s00603-013-0481-9.

    Article  Google Scholar 

  18. ZHENG Bo-wen, QI Sheng-wen, ZHAN Zhi-fa, et al. Effect of shear rate on the strength characteristics of rock joints [J]. Journal of Earth Sciences and Environment, 2015, 37(5): 101–110.

    Google Scholar 

  19. WANG Zhen, GU Lin-lin, SHEN Ming-rong, ZHANG Feng, ZHANG Guo-kai, DENG Shu-xin. Influence of shear rate on the shear strength of discontinuities with different joint roughness coefficients [J]. Geotechnical Testing Journal, 2020, 43(3): 20180291. DOI: https://doi.org/10.1520/gtj20180291.

    Article  Google Scholar 

  20. HASHIBA K, OKUBO S, FUKUI K. A new testing method for investigating the loading rate dependency of peak and residual rock strength [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(6): 894–904. DOI: https://doi.org/10.1016/j.ijrmms.2005.12.005.

    Article  Google Scholar 

  21. PATTON F D. Multiple modes of shear failure in rock.1st ISRM Congress [C]// The 1st Congress of the International Society of Rock Mechanics. Lisbon. 1966: 509–513.

  22. EINSTEIN H H, VENEZIANO D, BAECHER G B, O’REILLY K J. The effect of discontinuity persistence on rock slope stability [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(5): 227–236. DOI: https://doi.org/10.1016/0148-9062(83)90003-7.

    Article  Google Scholar 

  23. WANG Zhen, GU Lin-lin, SHEN Ming-rong, ZHANG Feng, ZHANG Guo-kai, WANG Xiao. Shear stress relaxation behavior of rock discontinuities with different joint roughness coefficient and stress histories [J]. Journal of Structural Geology, 2019, 126: 272–285. DOI: https://doi.org/10.1016/j.jsg.2019.06.016.

    Article  Google Scholar 

  24. BARTON N. Suggested methods for the quantitative description of discontinuities in rock masses [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(2): 22. DOI: https://doi.org/10.1016/0148-9062(79)91476-1.

    Google Scholar 

  25. CONTE S D, de BOOR. Elementary numerical analysis (an algorithmic approach) [M]. New York: McGraw-Hill College, 1972.

    MATH  Google Scholar 

  26. POTYONDY D O. Simulating stress corrosion with a bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 677–691. DOI: https://doi.org/10.1016/j.ijrmms.2006.10.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang  (王振).

Additional information

Foundation item

Projects(42002266, 51908288) supported by the National Natural Science Foundation of China; Project(2020M673654) supported by the Chinese Postdoctoral Science Foundation; Project(2019K284) supported by Jiangsu Post-doctoral Research Funding Program, China

Contributors

GU Lin-lin provided the concept and edited the draft of the manuscript. WANG Zhen conducted the literature review, tests and wrote the first draft of the manuscript. ZHANG Feng developed the idea for the study. GAO Fei and WANG Xiao analyzed the data. All authors contributed to the writing and revisions.

Conflict of interest

GU Lin-lin, WANG Zhen, ZHANG Feng, GAO Fei, WANG Xiao declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Ll., Wang, Z., Zhang, F. et al. Dynamic evolution of shear rate-dependent behavior of rock discontinuity under shearing condition. J. Cent. South Univ. 28, 1875–1887 (2021). https://doi.org/10.1007/s11771-021-4736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4736-4

Key words

关键词

Navigation