Skip to main content
Log in

AE waveform characteristics of rock mass under uniaxial loading based on Hilbert-Huang transform

基于 HHT 分析的岩体单轴加载声发射波形特征

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Acoustic Emission (AE) waveforms contain information on microscopic structural features that can be related with damage of coal rock masses. In this paper, the Hilbert-Huang transform (HHT) method is used to obtain detailed structural characteristics of coal rock masses associated with damage, at different loading stages, from the analyses of the characteristics of AE waveforms. The results show that the HHT method can be used to decompose the target waveform into multiple intrinsic mode function (IMF) components, with the energy mainly concentrated in the C1C4 IMF components, where the C1 component has the highest frequency and the largest amount of energy. As the loading continues, the proportion of energy occupied by the low-frequency IMF component shows an increasing trend. In the initial compaction stage, the Hilbert marginal spectrum is mainly concentrated in the low frequency range of 0–40 kHz. The plastic deformation stage is associated to energy accumulation in the frequency range of 0–25 kHz and 200–350 kHz, while the instability damage stage is mainly concentrated in the frequency range of 0–25 kHz. At 20 kHz, the instability damage reaches its maximum value. There is a relatively clear instantaneous energy peak at each stage, albeit being more distinct at the beginning and at the end of the compaction phase. Since the effective duration of the waveform is short, its resulting energy is small, and so there is a relatively high value from the instantaneous energy peak. The waveform lasts a relatively long time after the peak that coincides with failure, which is the period where the waveform reaches its maximum energy level. The Hilbert three-dimensional energy spectrum is generally zero in the region where the real energy is zero. In addition, its energy spectrum is intermittent rather than continuous. It is therefore consistent with the characteristics of the several dynamic ranges mentioned above, and it indicates more clearly the low-frequency energy concentration in the critical stage of instability failure. This study well reflects the response law of geophysical signals in the process of coal rock instability and failure, providing a basis for monitoring coal rock dynamic disasters.

摘要

声发射波形包含煤岩体失稳破坏的微观细致结构特征, 为了得到煤岩体在不同加载阶段更多的煤岩失稳细观结构特征, 本文采用HHT 方法对不同加载阶段的声发射波形特征进行分析。研究结果表明, HHT 可以将目标波形分解成多个IMF 分量, 能量主要集中在 c1 ~c4 IMF 分量, 其中 c1 分量频率最高, 能量也最大, 随着加载进行低频IMF 分量所占的能量比例呈现增加的趋势。Hilbert 边际谱在初始压密阶段集中在 0~40 kHz 的低频部分, 塑性变形阶段在 0~25 kHz 和 200~350 kHz 的范围内有明显的能量集聚特征, 而在失稳破坏时集中在 0~25 kHz, 并在 20 kHz 时达到最大。各个阶段均有一个较为明显的瞬时能量峰值, 在初始压密和压密结束阶段波形的瞬时能量峰值较高, 但由于波形有效持续时间较短, 携带的总体能量较小, 破坏时瞬时能量高值持续时间较长, 波形的总能量达到最大。Hilbert 三维能量谱在真实能量为 0 的区域, 其能量谱一般为 0, 并且分布是断续而非连续的, 跟前述几个动态范围的特点是一致的, 但更为明显地表明了失稳破坏临界阶段的能量低频集聚。该研究反映了煤岩失稳破坏演化过程的地球物理信号的响应规律, 为监测煤岩动力灾害提供依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MARTYN D R, MARK R A, PHILIP G M. Micro cracking during triaxial deformation of porous rocks monitored by changes in rock physical properties (II)-Pore volumometry and acoustic emission measurements on water-saturated rocks [J]. Tectonophysics, 1995, 245(3, 4): 223–235. DOI: https://doi.org/10.1016/0148-9062(96)86984-1.

    Google Scholar 

  2. LI Peng, REN Fen-hua, CAI Mei-feng. Investigating the mechanical and acoustic emission characteristics of brittle failure around a circular opening under uniaxial loading [J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(10): 1217–1230. DOI: https://doi.org/10.1007/s12613-019-1887-5.

    Article  Google Scholar 

  3. NIU Yue, ZHANG Xin, WANG En-yuan. A new method of monitoring the stability of boreholes for methane drainage from coal seams [J]. Measurement, 2020, 154: 107521. DOI: https://doi.org/10.1016/j.measurement.2020.107521.

    Article  Google Scholar 

  4. LI Xue-long, CHEN Shao-jie, WANG Sheng. Study on in situ stress distribution law of the deep mine taking Linyi Mining area as an example [J]. Advances in Materials Science and Engineering, 2021: 5594181. DOI: https://doi.org/10.1155/2021/5594181.

  5. CHEN Shao-jie, DU Zhao-wen, ZHANG Zhen. Effects of chloride on the early mechanical properties and microstructure of gangue-cemented paste backfill [J]. Construction and Building Materials, 2020, 235(2): 117504. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117504.

    Article  Google Scholar 

  6. MANTERLOA J, AGUIRRE M, ZURBITU J. Using acoustic emissions (AE) to monitor mode I crack growth in bonded joints [J]. Engineering Fracture Mechanics, 2020, 2241(2): 106778. DOI: https://doi.org/10.1016/j.engfracmech.2019.106778.

    Article  Google Scholar 

  7. LIU Xiang-xin, LIANG Zheng-zhao, ZHANG Yan-bo. Experimental study on the monitoring of rockburst in tunnels under dry and saturated conditions using AE and infrared monitoring [J]. Tunnelling and Underground Space Technology, 2018, 82(12): 517–528. DOI: https://doi.org/10.1016/j.tust.2018.08.011.

    Article  Google Scholar 

  8. LOU Quan, SONG Da-zhao, HE Xue-qiu. Correlations between acoustic and electromagnetic emissions and stress drop induced by burst-prone coal rock fracture [J]. Safety Science, 2019, 115(6): 310–319. DOI: https://doi.org/10.1016/j.ssci.2019.02.022.

    Article  Google Scholar 

  9. KONG Biao LIU Zhen, YAO Qing-guo. Study on the electromagnetic spectrum characteristics of underground coal fire hazardous and the detection criteria of high temperature anomaly area [J]. Environmental Earth Sciences. 2021, 80(3): 1–11. DOI: https://doi.org/10.1007/S12665-021-09380-5.

    Article  Google Scholar 

  10. TAN Jing-qiang, HU Cheng-er, HU Qiao. Multi-fractal analysis for the AE energy dissipation of CO2 and CO2+ brine/water treated low-clay shales under uniaxial compressive tests [J]. Fuel, 2019, 24615(6): 330–339. DOI: https://doi.org/10.1016/j.fuel.2019.03.008.

    Article  Google Scholar 

  11. WANG Kai, DU Feng. Coal-gas compound dynamic disasters in China: A review [J]. Process Safety and Environmental Protection, 2020, 133(1): 1–17. DOI: https://doi.org/10.1016/j.psep.2019.10.006.

    Article  Google Scholar 

  12. WANG Shao-feng, LI Xi-bing, YAO Jin-rui. Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock [J]. International Journal of Rock Mechanics and Mining Sciences. 2019, 122(11): 104063. DOI: https://doi.org/10.1016/j.ijrmms.2019.104063.

    Article  Google Scholar 

  13. LI Qing-miao, LIANG Yun-pei, ZOU Quan-le. Acoustic emission and energy dissipation characteristics of gas-bearing coal samples under different cyclic loading paths [J]. Natural Resources Research, 2019, 29(3): 1397–1412. https://doi.org/10.1007/s11053-019-09508-2.

    Google Scholar 

  14. LI Xue-long, CAO Zuo-yong, XU You-lin. Characteristics and trends of coal mine safety development [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020. DOI: https://doi.org/10.1080/15567036.2020.1852339.

  15. KONG Xiang-guo, WANG En-yuan, LI Shu-gang. Dynamic mechanical characteristics and fracture mechanism of gas-bearing coal based on SHPB experiments [J]. Theoretical and Applied Fracture Mechanics, 2020, 105(2): 102395. DOI: https://doi.org/10.1016/j.tafmec.2019.102395.

    Article  Google Scholar 

  16. CAI Wu, DOU Lin-ming, SI Guang-yao. A new seismic-based strain energy methodology for coal burst forecasting in underground coal mines [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123(11): 104086. DOI: https://doi.org/10.1016/j.ijrmms.2019.104086.

    Article  Google Scholar 

  17. YAN Fa-zhi, XU Jiang, PENG Shou-jian. Effect of capacitance on physicochemical evolution characteristics of bituminous coal treated by high-voltage electric pulses [J]. Powder Technology, 2020, 367(3): 47–55. DOI: https://doi.org/10.1016/j.powtec.2020.03.041.

    Article  Google Scholar 

  18. FAN Chao-jun, ELSWORTH D, LI Sheng. Thermo-hydromechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery [J]. Energy, 2019, 173(4): 1054–1077. DOI: https://doi.org/10.1016/j.energy.2019.02.126.

    Article  Google Scholar 

  19. ZHANG Zhi-bo, WANG En-yuan, ZHANG Ying-hua. Analysis on the time-frequency characteristics of ultrasonic waveform of coal under uniaxial loading [J]. Fractals, 2019, 27(6): 1950100. DOI: https://doi.org/10.1142/S0218348X19501007.

    Article  Google Scholar 

  20. KONG Biao, WANG En-yuan, LU Wei. Application of electromagnetic radiation detection in high-temperature anomalous areas experiencing coalfield fires [J]. Energy, 2019, 183(12): 116144. DOI: https://doi.org/10.1016/j.energy.2019.116144.

    Article  Google Scholar 

  21. LIU Xian-feng, SONG Da-zhao, HE XUE-qiu. Quantitative analysis of coal nanopore characteristics using atomic force microscopy [J]. Powder Technology, 2019, 346(3): 332–340. DOI: https://doi.org/10.1016/j.powtec.2019.02.027.

    Article  Google Scholar 

  22. XUE Yan-chao, SUN Wen-bin, WU Quan-sen. The influence of magmatic rock thickness on fracture and instability law of mining surrounding rock [J]. Geomechanics and Engineering, 2020, 20(6): 547–556. DOI: https://doi.org/10.12989/gae.2020.20.6.000.

    Google Scholar 

  23. LI Xue-long, LI Zhong-hui, WANG En-yuan. Microseismic signal spectra, energy characteristics and fractal features prior to rock burst: A case study in Qianqiu coal mine, China [J]. Journal of Earthquake Engineering, 2017, 21(5, 6): 891–911. DOI: https://doi.org/10.1080/13632469.2016.1210056.

    Article  Google Scholar 

  24. HE Man-chao, MIAO Jin-li, FENG J L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 286–298. DOI: https://doi.org/10.1016/j.ijrmms.2009.09.003.

    Article  Google Scholar 

  25. QIU Li-ming, SONG Da-zhao, LI Zhong-hui. Research on AE and EMR response law of the driving face passing through the fault [J]. Safety Science, 2019, 117(8): 184–193. DOI: https://doi.org/10.1016/j.ssci.2019.04.021.

    Article  Google Scholar 

  26. FENG Fan, CHEN Shao-jie, WANG Ya-jun. Cracking mechanism and strength criteria evaluation of granite affected by intermediate principal stresses subjected to unloading stress state [J]. International Journal of Rock Mechanics and Mining Sciences, 2021: 104783.

  27. ZHENG Chun-shan, JIANG Bing-you, XUE Sheng. Coalbed methane emissions and drainage methods in underground mining for mining safety and environmental benefits: A review [J]. Process Safety and Environmental Protection, 2019, 127(7): 103–124. DOI: https://doi.org/10.1016/j.psep.2019.05.010.

    Article  Google Scholar 

  28. NI Qing-qing, IWAMOTO M. Wavelet transform of acoustic emission signals in failure of model composites [J]. Engineering Fracture Mechanics, 2002, 69(6): 717–728. DOI: https://doi.org/10.1016/S0013-7944(01)00105-9.

    Article  Google Scholar 

  29. LIU Ting, LIN Bai-quan. Time-dependent dynamic diffusion processes in coal: Model development and analysis [J]. International Journal of Heat and Mass Transfer, 2019, 134(5): 1–9. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.005.

    Article  Google Scholar 

  30. FAN Jin-yang, LIU Wei, JIANG De-yi. Time interval effect in triaxial discontinuous cyclic compression tests and simulations for the residual stress in rock salt [J]. Rock Mechanics and Rock Engineering, 2020, 53(9): 4061–4076. DOI: https://doi.org/10.1007/s00603-020-02150-y.

    Article  Google Scholar 

  31. LI Xue-long, CHEN Shao-jie, LI Zhong-hui. Rockburst mechanism in coal rock with structural surface and the microseismic (MS) and electromagnetic radiation (EMR) response [J]. Engineering Failure Analysis, 2021, 124(6): 105396. DOI: https://doi.org/10.1016/j.engfailanal.2021.105396.

    Article  Google Scholar 

  32. ZHANG Chao-lin, WANG En-yuan, XU Jiang, A new method for coal and gas outburst prediction and prevention based on the fragmentation of ejected coal [J]. Fuel, 2021, 287(3): 119493. DOI: https://doi.org/10.1016/j.fuel.2020.119493.

    Article  Google Scholar 

  33. JEONG H, JANG Y S. Wavelet analysis of plate wave propagation in composite laminates [J]. Composite Structures, 2000, 49(4): 443–450. DOI: https://doi.org/10.1016/S0263-8223(00)00079-9.

    Article  Google Scholar 

  34. DING Y, REUBEN R L, STEEL J A. A new method for waveform analysis for estimating AE wave arrival times using wavelet decomposition [J]. NDT and E International, 2004, 37(4): 279–290. DOI: https://doi.org/10.1016/j.ndteint.2003.10.006.

    Article  Google Scholar 

  35. KONG Xiang-guo, WANG En-yuan, LI Shu-gang. Fractals and chaos characteristics of acoustic emission energy about gas-bearing coal during loaded failure [J]. Fractals, 2019, 27(5): 1950072. DOI: https://doi.org/10.1142/S0218348X19500725.

    Article  Google Scholar 

  36. PAN Jie-nan, LÜ Min-min, HOU Quan-lin. Coal microcrystalline structural changes related to methane adsorption/desorption [J]. Fuel, 2019, 239(1): 13–23. DOI: https://doi.org/10.1016/j.fuel.2018.10.155.

    Article  Google Scholar 

  37. CAI M, MORIOKA H, KAISER P K. Back-analysis of rock mass strength parameters using AE monitoring data [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 538–549. DOI: https://doi.org/10.1016/j.ijrmms.2006.09.012.

    Article  Google Scholar 

  38. CHEON D S, JUNG Y B, PARK E S. Evaluation of damage level for rock slopes using acoustic emission technique with waveguides [J]. Engineering Geology, 2011, 121(1): 75–88. DOI: https://doi.org/10.1016/j.enggeo.2011.04.015.

    Article  Google Scholar 

  39. HUANG, N E, ZHENG S, LONG S R. A new view of nonlinear water waves: The Hilbert spectrum [J]. Annu Rev Fluid Mech, 1999, 31(1): 417–457.

    Article  MathSciNet  Google Scholar 

  40. YANG Yu, YU De-jie, CHENG Jun-sheng. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM [J]. Measurement, 2007, 40(9, 10): 943–950. DOI: https://doi.org/10.1016/j.measurement.2006.10.010.

    Article  Google Scholar 

  41. ZOU Quan-le, LIU Han, CHENG Zhi-heng. Effect of slot inclination angle and borehole-slot ratio on mechanical property of pre-cracked coal: Implications for ECBM recovery using hydraulic slotting [J]. Natural Resources Research, 2020, 29: 1705–1729. DOI: https://doi.org/10.1007/s11053-019-09544-y.

    Article  Google Scholar 

  42. LI Li-ping, SHANG Cheng-shun, CHU Kai-wei. Large-scale geo-mechanical model tests for stability assessment of super-large cross-section tunnel [J]. Tunnelling and Underground Space Technology, 2021, 109(3), 103756. DOI: https://doi.org/10.1016/J.TUST.2020.103756.

    Article  Google Scholar 

  43. LOH C H, WU T C, HUANG N E. Application of the empirical mode decomposition Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses [J]. Bulletin of the Seismological Society of Americal, 2001, 91: 1339–1357. DOI: https://doi.org/10.1785/0120000715.

    Article  Google Scholar 

  44. LIU Jie, ZHANG Ran, SONG Da-zhao. Experimental investigation on occurrence of gassy coal extrusion in coalmine [J]. Safety Science, 2019, 113(3): 362–371. DOI: https://doi.org/10.1016/j.ssci.2018.12.012.

    Article  Google Scholar 

  45. LI Xue-long, LI Zhong-hui, WANG En-yuan. Extraction of microseismic waveforms characteristics prior to rock burst using Hilbert-Huang transform [J]. Measurement, 2016, 91(9): 101–113. DOI: https://doi.org/10.1016/j.measurement.2016.05.045.

    Article  Google Scholar 

  46. QIN Lei, LI Shu-gang, ZHAI Cheng. Changes in the pore structure of lignite after repeated cycles of liquid nitrogen freezing as determined by nitrogen adsorption and mercury intrusion [J]. Fuel, 2020, 267: 117214. DOI: https://doi.org/10.1016/j.fuel.2020.117214.

    Article  Google Scholar 

  47. LI Xi-bing, ZHANG Yi-ping, LIU Zhi-xiang. Wavelet analysis and Hilbert-Huang transform of blasting vibration signal [J]. Explosion and Shock Waves, 2005, 25(6): 528–535. DOI: https://doi.org/10.11883/1001-1455(2005)06-0528-08.

    Google Scholar 

  48. SHEN Wen-long, SHI Guo-cang, WANG Meng. Method of entry layout under synergistic effects of abutment stress and dynamic stress [J]. Shock and Vibration, 2020: 1–16. DOI: https://doi.org/10.1155/2020/6655293.

  49. LIU Shu-min, LI Xue-long, WANG Deng-ke. Experimental study on temperature response of different ranks of coal to liquid nitrogen soaking [J]. Natural Resources Research, 2021, 32(2): 1467–1480. DOI: https://doi.org/10.1007/s11053-020-09768-3.

    Article  Google Scholar 

  50. NGAMSIRIJIT P, WATCHARAWITTAYAKUL T, JARUMANEEROJ P. Antral contraction rate estimation from dynamic antral scintigraphy using Hilbert-Huang transform [J]. Computers in Biology and Medicine, 2020, 117(2): 103560. DOI: https://doi.org/10.1016/j.compbiomed.2019.103560.

    Article  Google Scholar 

  51. SUSANTO A, LIU C H, YAMADA K, Application of Hilbert-Huang transform for vibration signal analysis in end-milling [J]. Precision Engineering, 2018, 53(7): 263–277. DOI: https://doi.org/10.1016/j.precisioneng.2018.04.008.

    Article  Google Scholar 

  52. BANDARA S, RAJEEV P, GAD E. Damage detection of in service timber poles using Hilbert-Huang transform [J]. NDT & E International, 2019, 107(10): 102141. DOI: https://doi.org/10.1016/j.ndteint.2019.102141.

    Article  Google Scholar 

  53. VELTCHEVA A, SOARES C G. Analysis of wave groups by wave envelope-phase and the Hilbert-Huang transform methods [J]. Applied Ocean Research, 2016, 60(10): 176–184. DOI: https://doi.org/10.1016/j.apor.2016.09.006.

    Article  Google Scholar 

  54. HU Jian-ping, WANG Xiao-chao, QIN Hong. Novel and efficient computation of Hilbert-Huang transform on surfaces [J]. Computer Aided Geometric Design, 2016, 43(3): 95–108. DOI: https://doi.org/10.1016/j.cagd.2016.02.011.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-jie Chen  (陈绍杰).

Additional information

Foundation item

Projects(51904167, 51474134, 51774194) supported by the National Natural Science Foundation of China; Project(SKLCRSM19KF008) supported by the Research Fund of the State Key Laboratory of Coal Resources and Safe Mining, CUMT, China; Project(cstc2019jcyj-bsh0041) supported by the Natural Science Foundation of Chongqing, China; Project(2011DA105287-BH201903) supported by the Postdoctoral Science Foundation Project Funded by State Key Laboratory of Coal Mine Disaster Dynamics and Control, China; Project(2019SDZY034-2) supported by the Key R&D plan of Shandong Province, China; Project(2020M670781) supported by the China Postdoctoral Science Foundation; Project supported by the Taishan Scholars Project; Project supported by the Taishan Scholar Talent Team Support Plan for Advantaged & Unique Discipline Areas, China

Contributors

LI Xue-long wrote the draft of the whole manuscript. CHEN Shao-jie provided the concept and designed the experiment. LI Xue-long, LIU Shumin and LI Zhong-hui conducted the experiment.

Conflict of interest

LI Xue-long, CHEN Shao-jie, LIU Shu-min and LI Zhong-hui declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xl., Chen, Sj., Liu, Sm. et al. AE waveform characteristics of rock mass under uniaxial loading based on Hilbert-Huang transform. J. Cent. South Univ. 28, 1843–1856 (2021). https://doi.org/10.1007/s11771-021-4734-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4734-6

Key words

关键词

Navigation