Skip to main content
Log in

Rheological, mechanical, thermal, tribological and morphological properties of PLA-PEKK-HAp-CS composite

PLA-PEKK-HAp-CS 复合材料的流变学, 力学, 热学, 摩擦学和形态学性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The present study reports investigations on rheological, mechanical, thermal, tribological and morphological properties of feedstock filaments prepared with polylactic acid-polyether ketone ketone-hydroxyapatite-chitosan (PLA-PEKK-HAp-CS) composite for 3D printing of functional prototypes. The study consists of a series of melt processing operations on melt flow index (MFI) setup as per ASTM D-1238 for melt flow certainty followed by fixation of reinforcement composition/proportion as 94%PEKK-4%HAp-2%CS (B) by mass in PLA matrix (A). The blending of reinforcement and preparation of feedstock filament for fused deposition modeling (FDM) set up has been performed on commercial twin screw extruder (TSE). The results of study suggest that feedstock filaments prepared with blend of 95%A–5%B (by mass) at 200 °C processing temperature and 100 r/min rotational speed on TSE resulted into better tensile properties (35.9 MPa peak strength and 32.3 MPa break strength) with 6.24% surface porosity, 42.67 nm surface roughness (Ra) and acceptable heat capacity (2.14 J/g). However as regards to tribological behavior, the minimum wear of 316 µmwas observed for sample with poor tensile properties. As regards to crash application for scaffolds the maximum toughness of 1.16 MPa was observed for 85%A–15%B (by mass) at 200 °C processing temperature and 150 r/min rotational speed on TSE.

摘要

本文研究了用于3D 打印的功能材料, PLA-PEKK-HAp-CS 复合材料的流变学, 力学, 热力学, 摩擦学和形态学性能。基于STM D-1238 标准对流变性能指的要求, 确定94%PEKK-4%Hap-2%CS 作 为添加材料, 设计了熔体流动指数(MFI)装置, 进行了一系列熔化处理试验, 然后按一定的质量比将 PEKK94%-4%Hap-2%CS(B)与PLA(A)混合。原料丝的强化和制备的混合熔融沉积成型(FDM)在双 螺杆挤出机(TSE)上完成。结果表明, 原料丝在95%A-5%B 的质量比混合下, 在200 °C 处理温度和 100 r/min 转速时具备更好的拉伸性能, 峰值强度为35.9 MPa, 断裂强度为32.3 MPa, 表面孔隙度为 6.24%, 表面粗糙度(Ra)为42.67 nm, 可接受热容为2.14 J/g。而最小磨损为316 μm 时的样品拉伸性 能较差, 在200 °C 处理温度, 150 r/min 的转速和85%A-15%B 的质量比时, 样品丝的最大韧性模量 为1.16 MPa。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. SINGH R, BEDI P, FRATERNALI F, AHUJA I P S. Effect of single particle size, double particle size and triple particle size Al2Ö3 in Nylon-6 matrix on mechanical properties of feed stock filament for FDM [J]. Composites Part B: Engineering, 2016, 106: 20–27.

    Article  Google Scholar 

  2. SINGH R, KUMAR R, RANJAN N. Sustainability of recycled ABS and PA6 by banana fiber reinforcement: Thermal, mechanical and morphological properties [J]. Journal of the Institution of Engineers (India): Series C, 2019, 100(2): 351–360.

    Article  Google Scholar 

  3. SINGH R, KUMAR R, RANJAN N, PENNA R, FRATERNALI F. On the recyclability of polyamide for sustainable composite structures in civil engineering [J]. Composite Structures, 2018, 184: 704–713.

    Article  Google Scholar 

  4. KUMAR R, SINGH R, AHUJA I P S, AMENDOLA A, PENNA R. Friction welding for the manufacturing of PA6 and ABS structures reinforced with Fe particles [J]. Composites Part B: Engineering, 2018, 132: 244–257.

    Article  Google Scholar 

  5. KUMAR R, SINGH R, FARINA I. On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications [J]. PSU Research Review, 2018, 2(2): 115–137.

    Article  Google Scholar 

  6. GENG Peng, ZHAO Ji, WU Wen-zheng, YE Wen-li, WANG Yu-lei, WANG Shuo-bang, ZHANG Shuo. Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament [J]. Journal of Manufacturing Processes, 2019, 37: 266–273.

    Article  Google Scholar 

  7. HALEEM A, JAVAID M. Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: An overview [J]. Clinical Epidemiology and Global Health, 2019, 7(4): 571–577.

    Article  Google Scholar 

  8. YANG Chun-cheng, TIAN Xiao-yong, LI Di-chen, CAO Yi, ZHAO Feng, SHI Chang-quan. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material [J]. Journal of Materials Processing Technology, 2017, 248: 1–7.

    Article  Google Scholar 

  9. STEPASHKIN A A, CHUKOV D I, SENATOV F S, SALIMON A I, KORSUNSKY A M, KALOSHKIN S D. 3D-printed PEEK-carbon fiber (CF) composites: Structure and thermal properties [J]. Composites Science and Technology, 2018, 164: 319–326.

    Article  Google Scholar 

  10. DENG Li-jun, DENG Yi, XIE Ke-nan. AgNPs-decorated 3D printed PEEK implant for infection control and bone repair [J]. Colloids and Surfaces B: Biointerfaces, 2017, 160: 483–492.

    Article  Google Scholar 

  11. TORSTRICK F B, LIN A S P, POTTER D, SAFRANSKI D L, SULCHEK T A, GALL K, GULDBERG R E. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK [J]. Biomaterials, 2018, 185: 106–116.

    Article  Google Scholar 

  12. YU Xiao-ming, IBRAHIM M, LIU Zong-yuan, YANG Hua-zhe, TAN Li-li, YANG Ke. Biofunctional Mg coating on PEEK for improving bioactivity [J]. Bioactive Materials, 2018, 3(2): 139–143.

    Article  Google Scholar 

  13. BRUM R S, MONICH P R, BERTI F, FREDEL M C, PORTO L M, BENFATTI C A M, SOUZA J C M. On the sulphonated PEEK for implant dentistry: Biological and physicochemical assessment [J]. Materials Chemistry and Physics, 2019, 223: 542–547.

    Article  Google Scholar 

  14. BERRETTA S, DAVIES R, SHYNG Y T, WANG Y, GHITA O. Fused Deposition Modelling of high temperature polymers: Exploring CNT PEEK composites [J]. Polymer Testing, 2017, 63: 251–262.

    Article  Google Scholar 

  15. NASSIR N, BIRCH R S, CANTWELL W J, WANG Q Y, LIU L Q, GUAN Z W. The perforation resistance of glass fibre reinforced PEKK composites [J]. Polymer Testing, 2018, 72: 423–431.

    Article  Google Scholar 

  16. ZHOU Ying-hui, LEI Liang, YANG Bo, LI Jian-bo, REN Jie. Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites [J]. Polymer Testing, 2018, 68: 34–38.

    Article  Google Scholar 

  17. ESPOSITO C C, GERVASO F, SCALERA F, PADMANABHAN S K, MADAGHIELE M, MONTAGNA F, SANNINO A, LICCIULLI A, MAFFEZZOLI A. Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling [J]. Ceramics International, 2019, 45(2): 2803–2810.

    Article  Google Scholar 

  18. SCAFFARO R, LOPRESTI F, BOTTA L. PLA based biocomposites reinforced with Posidonia oceanica leaves [J]. Composites Part B: Engineering, 2018, 139: 1–11.

    Article  Google Scholar 

  19. SHI Xu-dong, CUI Li-guo, SUN Hai, JIANG Ni, HENG Li-ping, ZHUANG Xiu-li, GAN Zhi-hua, CHEN Xue-si. Promoting cell growth on porous PLA microspheres through simple degradation methods [J]. Polymer Degradation and Stability, 2019, 161: 319–325.

    Article  Google Scholar 

  20. FERNÁNDEZ-RONCO M P, HUFENUS R, HEUBERGER M. Effect of pressurized CO2 and N2 on the rheology of PLA [J]. European Polymer Journal, 2019, 112: 601–609.

    Article  Google Scholar 

  21. MURARIU M, DUBOIS P. PLA composites: From production to properties [J]. Advanced Drug Delivery Reviews, 2016, 107: 17–46.

    Article  Google Scholar 

  22. ROCCA-SMITH J R, CHAU N, CHAMPION D, BRACHAIS C H, MARCUZZO E, SENSIDONI A, PIASENTE F, KARBOWIAK T, DEBEAUFORT F. Effect of the state of water and relative humidity on ageing of PLA films [J]. Food Chemistry, 2017, 236: 109–119.

    Article  Google Scholar 

  23. SONG Y, LI Y, SONG W, YEE K, LEE K Y, TAGARIELLI V L. Measurements of the mechanical response of unidirectional 3D-printed PLA [J]. Materials & Design, 2017, 123: 154–164.

    Article  Google Scholar 

  24. KODAL M, WIS A A, OZKOC G. The mechanical, thermal and morphological properties of γ-irradiated PLA/TAIC and PLA/OvPOSS [J]. Radiation Physics and Chemistry, 2018, 153: 214–225.

    Article  Google Scholar 

  25. BHASNEY S M, BHAGABATI P, KUMAR A, KATIYAR V. Morphology and crystalline characteristics of polylactic acid [PLA]/linear low density polyethylene [LLDPE]/microcrystalline cellulose [MCC] fiber composite [J]. Composites Science and Technology, 2019, 171: 54–61.

    Article  Google Scholar 

  26. GAZZOTTI S, RAMPAZZO R, HAKKARAINEN M, BUSSINI D, ORTENZI M A, FARINA H, LESMA G, SILVANI A. Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites: An in situ approach [J]. Composites Science and Technology, 2019, 171: 94–102.

    Article  Google Scholar 

  27. FABBROCINO F, FARINA I, AMENDOLA A, FEO L, FRATERNALI F. Optimal design and additive manufacturing of novel reinforcing elements for composite materials [C]//Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016). Crete Island, Greece. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016: 1893–1908.

    Google Scholar 

  28. FRATERNALI F, CARPENTIERI G, MONTUORI R, AMENDOLA A, BENZONI G. On the use of mechanical metamaterials for innovative seismic isolation systems [C]//COMPDYN 2015-5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. 2015: 349–358.

  29. AMENDOLA A, FABBROCINO F, FEO L, FRATERNALI F. Dependence of the mechanical properties of pentamode materials on the lattice microstructure [C]// ECCOMAS Congress 2016-Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering. 2016: 2134–2150.

Download references

Acknowledgement

The authors are highly thankful to Guru Nanak at Dev Engg. College, Ludhiana (GNDEC) and SERB (File No. IMRC/AISTDF/R&D/P-10/2017) for providing financial/technical assistance to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Singh Rupinder.

Additional information

Contributors

The overarching research goals were developed by RUPINDER Singh, MD MUSTAFIZUR Rehman and SEERAM Ramakrishna. GURCHETAN Singh and RANVIJAY Kumar provided the experimental data, and analyzed the measured data. RANVIJAY Kumar and RUPINDER Singh established the models and calculated the predicted results. The initial draft of the manuscript was written by GURCHETAN Singh, RANVIJAY Kumar and RUPINDER Singh. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

GURCHETAN Singh, RANVIJAY Kumar, RUPINDER Singh, MD MUSTAFIZUR Rahman, SEERAM Ramakrishna declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurchetan, S., Ranvijay, K., Rupinder, S. et al. Rheological, mechanical, thermal, tribological and morphological properties of PLA-PEKK-HAp-CS composite. J. Cent. South Univ. 28, 1615–1626 (2021). https://doi.org/10.1007/s11771-021-4721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4721-y

Key words

关键词

Navigation