Skip to main content
Log in

Layer-by-layer assembly of cationic guar gum, cellulose nanocrystals and hydroxypropyl methylcellulose based multilayered composite films

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Eco-friendly sustainable materials provide an appealing template to replace contemporary synthetic-nonrenewable resource-based materials while maintaining the acceptable material properties to meet the performance requirements. Here, a layer-by-layer (LBL) self-assembly technique was used for fabricating multilayer composite films using all bio-based polymers/polysaccharides, i.e. cationic guar gum (CGg), carboxylated cellulose nanocrystals (cCNCs) and hydroxypropyl methylcellulose (HPMC). A five layered composite film was fabricated by depositing polymeric layers as follows: CGg→cCNCs→HPMC→cCNCs→CGg. The structural analysis of (CGg/cCNCs/HPMC)5 L multilayered composite films indicated the existence of electrostatic interaction as well as H-bonding between polymeric layers that resulted in homogenous, dense and compact film surface with improved smoothness and strength properties. As compared to pure CGg film, the (CGg/cCNCs/HPMC)5 L multilayered composite films showed improved tensile strength (84.8 % increment) and modulus (29.19 % improvement). Importantly, the deposition of HPMC layer contributed in achieving multilayer composite films with more flexible behavior (46.55 % improvement in elongation at break). Furthermore, owing to the high transparency (89.5 % transmittance), appreciable gas and oil barrier performance and resistance to various solvents (e.g. acetone, THF and DMAc), these multilayer films are promising candidates for various applications including renewable/sustainable packaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anukiruthika T, Sethupathy P, Wilson A, Kashampur K, Moses JA, Anandharamakrishnan C (2020) Multilayer packaging: advances in preparation techniques and emerging food applications. Compr Rev Food Sci Food Saf 19:1156–1186

    Article  CAS  PubMed  Google Scholar 

  • Arfat YA, Ejaz M, Jacob H, Ahmed J (2017) Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydr Polym 157:65–71

    Article  CAS  PubMed  Google Scholar 

  • Aydogdu A, Radke CJ, Bezci S, Kirtil E (2020) Characterization of curcumin incorporated guar gum/orange oil antimicrobial emulsion films. Int J Biol Macromol 148:110–120

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Saha N, Brodnjak UV, Sáha P (2019) Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: characterized for packaging fresh berries. Food Packag Shelf Life 22:100402

    Article  Google Scholar 

  • Bao SP, Tjong SC, Tang CY (2010) Crystallization behavior of semicrystalline polymer–clay nanocomposites. In: Tjong SC, Mai YW (eds) Physical properties and applications of polymer nanocomposites. Woodhead Publishing, pp 280–314

    Chapter  Google Scholar 

  • Bhat VG, Narasagoudr SS, Masti SP, Chougale RB, Shanbhag Y (2021) Hydroxy citric acid cross-linked chitosan/guar gum/poly (vinyl alcohol) active films for food packaging applications. Int J Biol Macromol 177:166–175

    Article  CAS  PubMed  Google Scholar 

  • Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W (2011) HPMC reinforced with different cellulose nano-particles. Carbohydr Polym 86:1549–1557

    Article  CAS  Google Scholar 

  • Biswas A, Pal S, Udayabhanu G (2017) Effect of chemical modification of a natural polysaccharide on its inhibitory action on mild steel in 15 % HCl solution. J Adhes Sci Technol 31:2468–2489

    Article  CAS  Google Scholar 

  • Bonnaillie LM, Tomasula PM (2015) Application of humidity-controlled dynamic mechanical analysis (DMA-RH) to moisture-sensitive edible casein films for use in food packaging. Polymers 7:91–114

    Article  CAS  Google Scholar 

  • Castleberry SA, Li W, Deng D, Mayner S, Hammond PT (2014) Capillary flow layer-by-layer: a microfluidic platform for the high-throughput assembly and screening of nanolayered film libraries. ACS Nano 8:6580–6589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerqueira MA, Bourbon AI, Pinheiro AC et al (2011) Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci Technol 22:662–671

    Article  CAS  Google Scholar 

  • Cheng S, Zhang Y, Cha R, Yang J, Jiang X (2016) Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties. Nanoscale 8:973–978

    Article  CAS  PubMed  Google Scholar 

  • Chu M, Feng N, An H, You G, Mo C, Zhong H, Hu D (2020) Design and validation of antibacterial and pH response of cationic guar gum film by combining hydroxyethyl cellulose and red cabbage pigment. Int J Biol Macromol 162:1311–1322

    Article  CAS  PubMed  Google Scholar 

  • Costa RR, Testera AM, Arias FJ, Rodríguez-Cabello JC, Mano JF (2013) Layer-by-layer film growth using polysaccharides and recombinant polypeptides: a combinatorial approach. J Phys Chem B 117:6839–6848

    Article  CAS  PubMed  Google Scholar 

  • Chakravartula SSN, Soccio M, Lotti N et al (2019) Characterization of composite edible films based on pectin/alginate/whey protein concentrate. Materials 12:1–19

    Article  CAS  Google Scholar 

  • Chudzikowski RJ (1971) Guar gum and its applications. J Soc Cosmet Chem 22:43–60

    CAS  Google Scholar 

  • Dai L, Cheng T, Wang Y, Lu H, Nie S, He H, Ni Y (2019) Injectable all-polysaccharide self-assembling hydrogel: a promising scaffold for localized therapeutic proteins. Cellulose 26:6891–6901

    Article  CAS  Google Scholar 

  • Dai L, Cheng T, Xi X, Nie S, Ke H, Liu Y, Chen Z (2020) A versatile TOCN/CGG self-assembling hydrogel for integrated wastewater treatment. Cellulose 27:915–925

    Article  CAS  Google Scholar 

  • Dai L, Long Z, Chen J, An X, Cheng D, Khan A, Ni Y (2017) Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl Mater Interfaces 9:5477–5485

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Wang B, Long Z, Chen L, Zhang D, Guo S (2015) Properties of hydroxypropyl guar/TEMPO-oxidized cellulose nanofibrils composite films. Cellulose 22:3117–3126

    Article  CAS  Google Scholar 

  • De Moura MR, Avena-Bustillos RJ, McHugh TH, Wood DF, Otoni CG, Mattoso LH (2011) Miniaturization of cellulose fibers and effect of addition on the mechanical and barrier properties of hydroxypropyl methylcellulose films. J Food Eng 104:154–160

    Article  CAS  Google Scholar 

  • Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  • Decher G, Hong JD (1991) June) Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromolekulare Chemie Macromolecular Symposia, vol 46. Hüthig & Wepf Verlag, Basel, pp 321–327

    Google Scholar 

  • Ding B, Fujimoto K, Shiratori S (2005) Preparation and characterization of self-assembled polyelectrolyte multilayered films on electrospun nanofibers. Thin Solid Films 491:23–28

    Article  CAS  Google Scholar 

  • Dong-Bao HE, Li-hua L, Qing L, Xiao-zhen Y (2004) Synergistic interaction and gelation in cationic guar gum-sodium alginate system. Wuhan Univ J Nat Sci 9:371–374

    Article  Google Scholar 

  • Ferreira ARV, Alves VD, Coelhoso IM (2016) Polysaccharide-based membranes in food packaging applications. Membranes 6:1–17

    Article  CAS  Google Scholar 

  • Karande VS, Bharimalla AK, Vigneshwaran N et al (2014) Cotton linter nano-fibers as the potential reinforcing agent for guar gum. Iran Polym J 23:869–879

    Article  CAS  Google Scholar 

  • Kaur J, Kaur G (2018) Optimization of pH conditions and characterization of polyelectrolyte complexes between gellan gum and cationic guar gum. Polym Adv Technol 29:3035–3048

    Article  CAS  Google Scholar 

  • Kokubo H, Ding B, Naka T, Tsuchihira H, Shiratori S (2007) Multi-core cable-like TiO2 nanofibrous membranes for dye-sensitized solar cells. Nanotechnology 18:165604

    Article  CAS  Google Scholar 

  • Lee SH, Kumar J, Tripathy SK (2000) Thin film optical sensors employing polyelectrolyte assembly. Langmuir 16:10482–10489

    Article  CAS  Google Scholar 

  • Li N, Zhang H, Xiao Y, Huang Y, Xu M, You D, Yu J (2019) Fabrication of cellulose-nanocrystal-based folate targeted nanomedicine via layer-by-layer assembly with lysosomal pH-controlled drug release into the nucleus. Biomacromol 20:937–948

    Article  CAS  Google Scholar 

  • Li Y, Wang X, Sun J (2012) Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem Soc Rev 41:5998–6009

    Article  CAS  PubMed  Google Scholar 

  • Mallapragada SK, Narasimhan B (2006) Infrared spectroscopy in analysis of polymer crystallinity. In: Meyers RA (ed) Encyclopedia of analytical chemistry. John Wiley & Sons, Ltd., London, UK, pp 7644–7658

    Google Scholar 

  • Mamedov AA, Kotov NA (2000) Free-standing layer-by-layer assembled films of magnetite nanoparticles. Langmuir 16:5530–5533

    Article  CAS  Google Scholar 

  • Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72:R39–R55

    Article  CAS  PubMed  Google Scholar 

  • Moreau C, Beury N, Delorme N, Cathala B (2012) Tuning the architecture of cellulose nanocrystal–poly (allylamine hydrochloride) multilayered thin films: influence of dipping parameters. Langmuir 28:10425–10436

    Article  CAS  PubMed  Google Scholar 

  • Nair SS, Zhu J, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain Chem Process 2:1–7

    Article  CAS  Google Scholar 

  • Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S et al (2020) Prospect of polysaccharide-based materials as advanced food packaging. Molecules 25:135

    Article  CAS  Google Scholar 

  • Ogawa T, Ding B, Sone Y, Shiratori S (2007) Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes. Nanotechnology 18:165607

    Article  CAS  Google Scholar 

  • Olek M, Ostrander J, Jurga S, Mo H (2004) Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies. Nano Lett 4:1889–1895

    Article  CAS  Google Scholar 

  • Pillai KV, Renneckar S (2016) Dynamic mechanical analysis of layer-by-layer cellulose nanocomposites. Ind Crops Prod 93:267–275

    Article  CAS  Google Scholar 

  • Qi ZD, Saito T, Fan Y, Isogai A (2012) Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils. Biomacromol 13:553–558

    Article  CAS  Google Scholar 

  • Raj V, Bajpai A (2020) Synthesis of hydrophobically modified guar gum film for packaging materials. Mater Today Proc 29:1132–1142

    Article  CAS  Google Scholar 

  • Rao MS, Kanatt SR, Chawla SP, Sharma A (2010) Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr Polym 82:1243–1247

    Article  CAS  Google Scholar 

  • Richardson JJ, Björnmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348:2491

    Article  CAS  Google Scholar 

  • Saini A, Yadav C, Xue BL, Wang N, Dai L, Li X (2019) Mixed-acid-assisted hydrothermal process for simultaneous preparation and carboxylation of needle-shaped cellulose nanocrystals. ACS Appl Polym Mater 2:548–562

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21:528–536

    Article  CAS  Google Scholar 

  • Saurabh CK, Gupta S, Bahadur J, Mazumder S, Variyar PS, Sharma A (2015) Mechanical and barrier properties of guar gum based nano-composite films. Carbohydr Polym 124:77–84

    Article  CAS  PubMed  Google Scholar 

  • Senturk Parreidt T, Müller K, Schmid M (2018) Alginate-based edible films and coatings for food packaging applications. Foods 7:170

    Article  CAS  Google Scholar 

  • Seyrek E, Decher G (2012) Layer-by-Layer assembly of multifunctional hybrid materials and nanoscale devices. In: Matyjaszewski K, Müller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 159−185

  • Sharma D, Kumar V, Sharma P (2020) Application, synthesis, and characterization of cationic galactomannan from ruderal species as a wet strength additive and flocculating agent. ACS Omega 5:25240–25252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui L, Huang L, Podsiadlo P, Kotov NA, Kieffer J (2010) Brillouin light scattering investigation of the mechanical properties of layer-by-layer assembled cellulose nanocrystal films. Macromolecules 43:9541–9548

    Article  CAS  Google Scholar 

  • Tang Y, Zhang X, Zhao R et al (2018) Preparation and properties of chitosan/guar gum/nanocrystalline cellulose nanocomposite films. Carbohydr Polym 197:128–136

    Article  CAS  PubMed  Google Scholar 

  • Thombare N, Jha U, Mishra S, Siddiqui MZ (2016) Guar gum as a promising starting material for diverse applications: a review. Int J Biol Macromol 88:361–372

    Article  CAS  PubMed  Google Scholar 

  • Vera P, Canellas E, Nerín C (2020) Compounds responsible for off-odors in several samples composed by polypropylene, polyethylene, paper and cardboard used as food packaging materials. Food Chem 309:125792

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Gardner DJ, Stark NM, Bousfield DW, Tajvidi M, Cai Z (2018) Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain Chem Eng 6:49–70

    Article  CAS  Google Scholar 

  • Yadav C, Saini A, Maji PK (2018) Cellulose nanofibres as biomaterial for nano-reinforcement of poly [styrene-(ethylene-co-butylene)-styrene] triblock copolymer. Cellulose 25:449–461

    Article  CAS  Google Scholar 

  • Yadav M, Chiu FC (2019) Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications. Carbohydr Polym 211:181–194

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Behera K, Chang YH, Chiu FC (2020) Cellulose nanocrystal reinforced chitosan-based UV barrier composite films for sustainable packaging. Polymers 12:202

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao K, Wang W, Teng A et al (2020) Using cellulose nanofibers to reinforce polysaccharide films: blending vs layer-by-layer casting. Carbohydr Polym 227:115264

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Xuan H, Ren J, Ge L (2015) Self-healing multilayer polyelectrolyte composite film with chitosan and poly (acrylic acid). Soft Matter 11:8452–8459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (31370578) and Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chandravati Yadav or Xinping Li.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

This article is an original work not submitted to/published elsewhere in any form or part. Proper acknowledgement to other works is given and the results are presented clearly, honestly and without fabrication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (1688KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, A., Sharma, D., Xia, Y. et al. Layer-by-layer assembly of cationic guar gum, cellulose nanocrystals and hydroxypropyl methylcellulose based multilayered composite films. Cellulose 28, 8445–8457 (2021). https://doi.org/10.1007/s10570-021-04064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04064-6

Keywords

Navigation