Skip to main content
Log in

Mapping of a major QTL for salinity tolerance at the bud burst stage in rice (Oryza sativa L) using a high-density genetic map

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Salinity tolerance plays an important role in direct seeding cultivation since tolerance to salinity at the bud burst stage of rice directly affects seedling formation and yield. However, information on the quantitative trait loci (QTL) associated with salinity tolerance at the bud burst stage is limited. Here, a recombinant inbred line (RIL) population, derived from a cross between Kongyu131 (salinity-sensitive) and Xiaobaijingzi (salinity-tolerant), was used to identify QTLs for salinity tolerance at the bud burst stage using a high-density genetic map. Four QTLs were identified. The threshold LOD score for QTL identification was 3.0. Among the four QTLs detected, two QTLs namely qRSL3 (PVE, 22.59%) and qRRL3 (PVE, 21.21%) were considered to be one QTL, named qST3, which was the major QTL related to salinity tolerance on chromosome 3. This major QTL was located within an interval of 2.55 Mb and contained 253 candidate genes. Using RNA-seq data, 51 differentially expressed genes (DEGs) were detected among the candidate region. According to Rice Annotation Project and quantitative real-time PCR (qRT-PCR) analysis, Os03g0664800 was accepted as the most likely candidate gene for qST3. These results will be useful for improving salinity tolerance of rice and for developing rice cultivars suitable for direct seeding in salinized soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bimpong IK, Manneh B, Diop B, Ghislain K, Sow A, Amoah NKA, Gregorio G, Singh RK, Ortiz R, Wopereis M (2014) New quantitative trait loci for enhancing adaptation to salinity in rice from Hasawi, a Saudi landrace into three African cultivars at the reproductive stage. Euphytica 200(1):45–60

    Article  CAS  Google Scholar 

  • Chen T, Zhu Y, Chen K, Shen C, Zhao X, Shabala S, Shabala L, Meinke H, Venkataraman G, Chen ZH (2020) Identification of new QTL for salt tolerance from rice variety Pokkali. J Agron Crop Sci 206(2):202–213

    Article  CAS  Google Scholar 

  • Dingkuhn M, De Datta S, Pamplona R, Javellana C, Schnier H (1992) Effect of late-season N fertilization on photosynthesis and yield of transplanted and direct-seeded tropical flooded rice. II. a canopy stratification study. Field Crops Res 28(3):235–249

    Article  Google Scholar 

  • Hossain H, Rahman M, Alam M, Singh R (2015) Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. J Agron Crop Sci 201(1):17–31

    Article  CAS  Google Scholar 

  • Huang X-Y, Chao D-Y, Gao J-P, Zhu M-Z, Shi M, Lin H-X (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23(15):1805–1817

    Article  CAS  Google Scholar 

  • Kong W, Zhong H, Gong Z, Fang X, Sun T, Deng X, Li Y (2019) Meta-analysis of salt stress transcriptome responses in different rice genotypes at the seedling stage. Plants 8(3):64

    Article  CAS  Google Scholar 

  • Lei L, Zheng H, Bi Y, Yang L, Liu H, Wang J, Sun J, Zhao H, Li X, Li J (2020) Identification of a Major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice (Oryza sativa L.) using QTL-Seq and RNA-Seq. Rice 13(1):1–14

    Article  Google Scholar 

  • Li X, Zheng H, Wu W, Liu H, Wang J, Jia Y, Li J, Yang L, Lei L, Zou D (2020) QTL Mapping and candidate gene analysis for Alkali tolerance in japonica rice at the bud stage based on linkage mapping and Genome-wide association study. Rice 13(1):1–11

    Google Scholar 

  • Liang W, Cui W, Ma X, Wang G, Huang Z (2014) Function of wheat Ta-UnP gene in enhancing salt tolerance in transgenic Arabidopsis and rice. Biochem Biophys Res Commun 450(1):794–801

    Article  CAS  Google Scholar 

  • Liao Y-D, Lin K-H, Chen C-C, Chiang C-M (2016) Oryza sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Mol Breeding 36(3):22

    Article  Google Scholar 

  • Liu H, Hussain S, Zheng M, Peng S, Huang J, Cui K, Nie L (2015) Dry direct-seeded rice as an alternative to transplanted-flooded rice in Central China. Agron Sustain Dev 35(1):285–294

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Ma X, Chen X, Zhao J, Wang S, Tan L, Sun C, Liu F (2019) Identification of QTLs related to cadmium tolerance from wild rice (Oryza nivara) using a high-density genetic map for a set of introgression lines. Euphytica 215(12):1–12

    Article  Google Scholar 

  • Mardani Z, Rabiei B, Sabouri H, Sabouri A (2014) Identification of molecular markers linked to salt-tolerant genes at germination stage of rice. Plant Breed 133(2):196–202

    Article  CAS  Google Scholar 

  • McCouch S (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13

    Google Scholar 

  • Mohammadi R, Mendioro MS, Diaz GQ, Gregorio GB, Singh RK (2013) Mapping quantitative trait loci associated with yield and yield components under reproductive stage salinity stress in rice (Oryza sativa L.). J Genet 92(3):433–443

    Article  CAS  Google Scholar 

  • Niones JM (2004) Fine mapping of the salinity tolerance gene on chromosome 1 of rice (Oryza sativa L.) using near-isogenic lines. MS, Dissertation, University of the Philippines Los Banos, Laguna

    Google Scholar 

  • Puram VRR, Ontoy J, Linscombe S, Subudhi PK (2017) Genetic dissection of seedling stage salinity tolerance in rice using introgression lines of a salt tolerant landrace Nona Bokra. J Hered 108(6):658–670

    Article  CAS  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. In: Natural resources forum, vol 4. Wiley, pp 282–295

  • Ren Z-H, Gao J-P, Li L-G, Cai X-L, Huang W, Chao D-Y, Zhu M-Z, Wang Z-Y, Luan S, Lin H-X (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37(10):1141–1146

    Article  CAS  Google Scholar 

  • Sabouri H, Sabouri A (2008) New evidence of QTLs attributed to salinity tolerance in rice. Afr J Biotechnol 7(24):4376–4388

    CAS  Google Scholar 

  • Sabouri H, Biabani A (2009) Toward the mapping of agronomic characters on a rice genetic map: quantitative trait loci analysis under saline condition. Biotechnology 8(1):144–149

    Article  Google Scholar 

  • Setter TL, Laureles EV (1996) The beneficial effect of reduced elongation growth on submergence tolerance of rice. J Exp Bot 47(10):1551–1559

    Article  CAS  Google Scholar 

  • Singh K, Khanna CR (2010) Physiology and QTL analysis of coleoptile length, a trait for drought tolerance in wheat. J Plant Biol 37(2):1–9

    Google Scholar 

  • Takehisa H, Shimodate T, Fukuta Y, Ueda T, Yano M, Yamaya T, Kameya T, Sato T (2004) Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crop Res 89(1):85–95

    Article  Google Scholar 

  • Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3(2–3):148–160

    Article  Google Scholar 

  • Vignols F, Wigger M, Garcia-Garrido JM, Grellet F, Kader J-C, Delseny M (1997) Rice lipid transfer protein (LTP) genes belong to a complex multigene family and are differentially regulated. Gene 195(2):177–186

    Article  CAS  Google Scholar 

  • Wang F, Duan D, Duan P, Wang B (2007) Coleoptile elongation response of different salt-tolerant wheat cultivars to NaCl stress. Acta Agron Sin 33(12):2053

    CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  Google Scholar 

  • Wang Z, Wang J, Bao Y, Wu Y, Zhang H (2011) Quantitative trait loci controlling rice seed germination under salt stress. Euphytica 178(3):297–307

    Article  Google Scholar 

  • Wang Z, Chen Z, Cheng J, Lai Y, Wang J, Bao Y, Huang J, Zhang H (2012a) QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PLoS One 7(12):e51202

    Article  CAS  Google Scholar 

  • Wang Z, Cheng J, Chen Z, Huang J, Bao Y, Wang J, Zhang H (2012b) Identification of QTLs with main, epistatic and QTL× environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theor Appl Genet 125(4):807–815

    Article  CAS  Google Scholar 

  • Yang T, Zhang S, Zhao J, Liu Q, Huang Z, Mao X, Dong J, Wang X, Zhang G, Liu B (2016) Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice (Oryza sativa L.). Mol Breed 36(7):1–10

    Article  Google Scholar 

  • Yang J, Sun K, Li D, Luo L, Liu Y, Huang M, Yang G, Liu H, Wang H, Chen Z (2019) Identification of stable QTLs and candidate genes involved in anaerobic germination tolerance in rice via high-density genetic mapping and RNA-Seq. BMC Genomics 20(1):1–15

    Article  Google Scholar 

  • Yu H, Xie W, Li J, Zhou F, Zhang Q (2014) A whole-genome SNP array (RICE 6 K) for genomic breeding in rice. Plant Biotechnol J 12(1):28–37

    Article  CAS  Google Scholar 

  • Yu J, Zao W, He Q, Kim T-S, Park Y-J (2017) Genome-wide association study and gene set analysis for understanding candidate genes involved in salt tolerance at the rice seedling stage. Mol Genet Genom 292(6):1391–1403

    Article  CAS  Google Scholar 

  • Zeng L, Shannon MC, Lesch SM (2001) Timing of salinity stress affects rice growth and yield components. Agric Water Manag 48(3):191–206

    Article  Google Scholar 

  • Zhang J-S, Xie C, Li Z-Y, Chen S-Y (1999) Expression of the plasma membrane H+-ATPase gene in response to salt stress in a rice salt-tolerant mutant and its original variety. Theor Appl Genet 99(6):1006–1011

    Article  CAS  Google Scholar 

  • Zhang M, Ye J, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Wei X, Yang Y (2018) Genome-wide association study of cold tolerance of Chinese indica rice varieties at the bud burst stage. Plant Cell Rep 37(3):529–539

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (U20A2025) the Natural Science Foundation Joint Guide Project of Heilongjiang (LH2019C035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Detang Zou or Hongliang Zheng.

Ethics declarations

Conflict of interest

The author declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 119 kb)

Genetic linkage map and QTL mapping results (PNG 741 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, L., Han, Z., Cui, B. et al. Mapping of a major QTL for salinity tolerance at the bud burst stage in rice (Oryza sativa L) using a high-density genetic map. Euphytica 217, 167 (2021). https://doi.org/10.1007/s10681-021-02901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-021-02901-0

Keywords

Navigation