Skip to main content

Advertisement

Log in

Protecting People and Property While Restoring Coastal Wetland Habitats

  • Special Issue: Concepts and Controversies in Tidal Marsh Ecology Revisited
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Flood mitigation and protection of coastal infrastructure are key elements of coastal management decisions. Similarly, regulating and provisioning roles of coastal habitats have increasingly prompted policy makers to consider the value of ecosystem goods and services in these same decisions, broadly defined as “the benefits people obtain from ecosystems.” We applied these principles to a study at three earthen levees used for flood protection. By restricting tidal flows, the levees degraded upstream wetlands, either by reducing salinity, creating standing water, and/or by supporting monocultures of invasive variety Phragmites australis. The wetlands, located at Greenwich, NJ, on Delaware Bay, were evaluated for restoration in this study. If unrestricted tidal flow were reestablished with mobile gates or similar devices, up to 226 ha of tidal salt marsh would be potentially restored to Spartina spp. dominance. Using existing literature and a value transfer approach, the estimated total economic value (TEV) of goods and services provided annually by these 226 ha of restored wetlands ranged from $2,058,182 to $2,390,854 y−1. The associated annual engineering cost for including a mobile gate system to fully restore tidal flows to the upstream degraded wetlands was about $1,925,614 y−1 resulting in a benefit-cost ratio range of 0.98–1.14 over 50 years (assuming no wetland benefits realized during the first 4 years). Thus, inclusion of a cost-effective mobile gate system in any engineering design to improve long-term flood resilience in the region would produce dual benefits of protecting people and property from major storms, while preserving and enhancing ecosystem values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Able, K.W., and S.M. Hagan. 2003. Impact of common reed, Phragmites australis, on essential fish habitat: Influence on reproduction, embryological development, and larval abundance of mummichog (Fundulus heterocltus). Estuaries 26 (1): 40–50.

    Article  Google Scholar 

  • Able, K.W., S.M. Hagen, and S.A. Brown. 2003. Mechanisms of marsh habitat alteration due to Phragmites: Response of young-of-year mummichog (Fundulus heteroclitus) to treatment for Phragmites removal. Estuaries 26 (2): 484–494.

    Article  Google Scholar 

  • Arrow, K.J. 1966. The rate of discount for long-term public investment. In Energy and the environment: A risk benefit approach, ed. A. Holt, R.L. Rudman, and C.G. Shipple, 113–140. New York: Pergamon Press.

    Google Scholar 

  • Azar, C., and T. Sterner. 1996. Discounting and distributional considerations in the context of global warming. Ecological Economics 19 (2): 169–184.

    Article  Google Scholar 

  • Balmford, A., A. Bruner, P. Cooper, et al. 2002. Economic reasons for conserving wild nature. Science 297 (5583): 950–953.

    Article  CAS  Google Scholar 

  • Barbier, E.B., E.W. Koch, B.R. Silliman, S.D. Hacker, E. Wolanski, J. Primavera, E.F. Granek, S. Polasky, S. Aswani, L.A. Cramer, D.M. Stoms, C.J. Kennedy, D. Bael, C.V. Kappel, G.M. Perillo, and D.J. Reed. 2008. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319 (5861): 321–323.

    Article  CAS  Google Scholar 

  • Chambers, R.M., L.A. Meyerson, and K. Saltonstall. 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany 64 (3-4): 261–273.

    Article  Google Scholar 

  • Clifton, J., L. Cullen-Unsworth, and R.K.F. Unsworth. 2014. Valuing and evaluating marine ecosystem services. Environment and Society 5: 66–85.

    Article  Google Scholar 

  • Colombano, D.D., S.Y. Litvin, R.E. Turner, et al. 2021. Climate change effects on tidal marsh structure, function, and persistence into the uncertain future. Estuaries and Coasts (this issue).

  • Costanza, R., and W. Mates. 2007. Valuing New Jersey’s natural capital: An assessment of the economic value of the State’s natural resources. Final Report: New Jersey Department of Environmental Protection, Trenton, NJ.

    Google Scholar 

  • Costanza, R., S.C. Farber, and J. Maxwell. 1989. Valuation and management of wetland ecosystems. Ecological Economics 1 (4): 335–361.

    Article  Google Scholar 

  • Costanza, R., R. deGroot, P. Sutton, et al. 2014. Changes in the global value of ecosystem services. Global Environmental Change 26: 152–158.

    Article  Google Scholar 

  • Coverdale, T.C., N.C. Herrmann, A.H. Altieri, and M.D. Bertness. 2013. Latent impacts: The role of historical human activity in coastal habitat loss. Frontiers in Ecology and the Environment 11: 69–74.

    Article  Google Scholar 

  • Currin, C.A., S.C. Wainright, K.W. Able, M.P. Weinstein, and C.M. Fuller. 2003. Determination of food web support and trophic position of the mummichog, Fundulus heteroclitus, in New Jersey smooth cordgrass (Spartina alterniflora), common reed (Phragmites australis), and restored salt marshes. Estuaries 26 (2B): 495–510.

    Article  Google Scholar 

  • Daiber, F.C. 1986. Conservation of tidal marshes. New York: Van Nostrand Reinhold Company.

    Google Scholar 

  • de Groot, R., M. Stuip, M.A.M. Finlayson, and N. Davidson. 2006. Valuing wetlands: Guidance for valuing the benefits derived from wetland ecosystem services, Ramsar Technical Report No. 3/CBD, Gland, Switzerland.

  • de Groot, R., L. Brander, S., van der Ploeg S. van der Ploeg, R. Costanza, F. Bernard, L. Braat, M. Christie, N. Crossman, A. Ghermandi, L. Hein, S. Hussain, P. Kumar, A. McVittie, R. Portela, L.C. Rodriguez, P. ten Brink, P. van Beukering 2012. Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services 1: 50–61, 1.

  • Dibble, L.K., and L.A. Meyerson. 2012. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes. PlosOne 7: 1–16.

    Article  CAS  Google Scholar 

  • Dibble, L.K., and L.A. Meyerson. 2013. The effects of plant invasion and ecosystem restoration on energy flow through salt marsh food webs. Estuaries and Coasts 37: 339–353.

    Article  Google Scholar 

  • Dibble, L.K., and L.A. Meyerson. 2016. Detection of decreased quantities of actively spawning female Fundulus heteroclitus in tidally restricted marshes relative to restored and reference sites. Biological Invasions 18 (9): 2679–2687.

    Article  Google Scholar 

  • Dick, T.M., and O.O. Osunkoya. 2000. Influence of tidal restriction floodgates on decomposition of mangrove litter. Aquatic Botany 68 (3): 273–280.

    Article  Google Scholar 

  • Dobson, A., D. Lodge, J. Alder, G.S. Cumming, J. Keymer, J. McGlade, H. Mooney, J.A. Rusak, O. Sala, V. Wolters, D. Wall, R. Winfree, and M.A. Xenopoulos. 2006. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87 (8): 1915–1924.

    Article  Google Scholar 

  • Dodds, W.K., K.C. Wilson, R.L. Rehmeier, G.L. Knight, S. Wiggam, J.A. Falke, H.J. Dalgleish, and K.N. Bertrand. 2008. Comparing ecosystem goods and services provided by restored and native lands. Bioscience 58 (9): 837–845.

    Article  Google Scholar 

  • Eberhardt, A.L., D.M. Burdick, and M. Dionne. 2011. The effects of road culverts on nekton in New England salt marshes: Implications for tidal restoration. Restoration Ecology 19 (6): 776–785.

    Article  Google Scholar 

  • FEMA (Federal Emergency Management Agency). 2016. Flood insurance study, Cumberland County, New Jersey, June 16.

  • Gilby, B., M.P. Weinstein, S.B. Alford, et al. 2021. Human impacts drive structural changes at multiple spatial scales across salt marsh seascapes that impinge upon ecosystem services. Estuaries and Coasts (this issue).

  • Goulder, L., and R.N. Stavins. 2002. An eye on the future. Nature 419 (6908): 673–674.

    Article  CAS  Google Scholar 

  • Guo, Q., D. Bushek, and R.G. Lathrop. 2014. Strategies for flood risk reduction for vulnerable coastal populations around Delaware Bay. Final Report. New Jersey Department of Environmental Protection, Trenton NJ.

  • Hallegate, S., N. Ranger, O. Mestre, P. Dumas, J. Corfee-Morlot, C. Herweijer, and R.M. Wood. 2011. Assessing climate change impacts, sea level rise and storm surge risk in port cities: A case study on Copenhagen. Climatic Change 104 (1): 113–137.

    Article  Google Scholar 

  • Heal, G., E.B. Barbier, K.J., Boyle, et al. 2005. Valuing ecosystem services: Toward better environmental decision making. National Acadamy Press, Washington D.C.

  • Howarth, R.B., and S.B. Farber. 2002. Accounting for the value of ecosystem services. Ecological Economics 41 (3): 421–429.

    Article  Google Scholar 

  • Interagency Climate Change Adaptation Task Force (ICCATF). 2011. Federal actions for a climate resilient nation. DC: Washington.

    Google Scholar 

  • Jeroen, C.J.H.A., W.J. Wouter Botzen, K. Emanuel, N. Lin, H. de Moel, and E.O. Michel-Kerjan. 2014. Evaluating flood resilience strategies for coastal megacities. Science 334: 473–475.

    Google Scholar 

  • Karberg, J.M., K.C. Beattie, and D.I., et al. 2018. Tidal hydrology and salinity drives salt marsh vegetation restoration and Phragmites australis control in New England. Wetlands 38 (5): 993–1003.

    Article  Google Scholar 

  • Kroon, F.J., and D.H. Ansell. 2006. A comparison of species assemblages between drainage systems with and without floodgates: Implications for coastal floodplain management. Canadian Journal of Fisheries and Aquatic Sciences 63 (11): 2400–2417.

    Article  Google Scholar 

  • Litvin, S.Y., and M.P. Weinstein. 2003. Life history strategies of estuarine nekton: The role of marsh macrophytes, microphytobenthos and phytoplankton in the trophic spectrum. Estuaries 26 (B): 553–653.

    Google Scholar 

  • Litvin, S.Y., and M.P. Weinstein. 2004. Multivariate analysis of stable isotope ratios to infer movements and utilization of estuarine organic matter by juvenile weakfish (Cynoscion regalis). Canadian Journal of Fisheries and Aquatic Sciences 61 (10): 1851–1861.

    Article  Google Scholar 

  • Litvin, S.Y., M.P. Weinstein, and V.G. Guida. 2014. Habitat specific energy density and biochemical condition of juvenile weakfish (Cynoscion regalis) in the Delaware Bay estuary, USA. Marine Ecology Progress. Series 510: 87–99.

    Article  Google Scholar 

  • MEA (Millennium Ecosystem Assessment). 2003. Ecosystems and human well-being: Synthesis. Washington, DC: Island Press.

    Google Scholar 

  • Montague, C.L., A.V. Zale, and H.F. Percival. 1987. Ecological effects of coastal marsh impoundments: A review. Environmental Management 11 (6): 743–756.

    Article  CAS  Google Scholar 

  • Mooyaart, L.F., S.N. Jonkman, P.A.L. de Vries, et al. 2014. Storm surge barrier: Overview and design considerations. Coastal Engineering Proceedings, January, DOI 1 (34): 45. https://doi.org/10.9753/icce.v34.structures.45.

    Article  Google Scholar 

  • NOAA. 2018. https://tidesandcurrents.noaa.gov

  • Raposa, K.B. 2008. Early ecological responses to hydrologic restoration of a tidal pond and salt marsh complex in Narragansett Bay, Rhode Island. Journal of Coastal Research 55: 180–192.

    Article  Google Scholar 

  • Raposa, K.B., and C.T. Roman. 2003. Using gradients in tidal restriction to evaluate nekton community responses to salt marsh restoration. Estuaries and Coasts 26: 198–205.

    Google Scholar 

  • Ring, I., B. Hansju, T. Elmqvist, H. Wittmer, and P. Sukhdev. 2010. Challenges in framing the economics of ecosystems and biodiversity: The TEEB initiative. Current Opinion in Environmental Sustainability. 2 (1-2): 15–26.

    Article  Google Scholar 

  • Roman, C.T., W.A. Niering, and R.S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction. Environmental Management 8 (2): 141–149.

    Article  Google Scholar 

  • Rooth, J.E., J.C. Stevenson, and J.C. Cornwall. 2003. Increased sediment accretion rates following invasion by Phragmites australis: The role of litter. Estuaries 26 (2B): 475–483.

    Article  Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences 99 (4): 2445–2449.

    Article  CAS  Google Scholar 

  • Schaefer, M., E. Goldman, A.M. Bartuska, A. Sutton-Grier, and J. Lubchenco. 2015. Nature as capital: Advancing and incorporating ecosystem services in United States federal policies and programs. Proceedings of the National Academy of Sciences 112 (24): 7383–7389.

    Article  CAS  Google Scholar 

  • Sinicrope, T.L., P.G. Mine, R. Scott Warren, et al. 1990. Restoration of an impounded New England salt marsh. Estuaries 13 (1): 25–30.

    Article  Google Scholar 

  • Streever, W.J. 1997. Trends in Australian wetland rehabilitation. Wetlands Ecology and Management 5 (1): 5–18.

    Article  Google Scholar 

  • Sultana, P., and P.M. Thompson. 1998. Effects of flood control and drainage on fisheries in Bangladesh and the design of mitigatin measures. River Research and Applications 13: 43–55.

    Google Scholar 

  • Sutton-Grier, A.E., K. Wowk, and H. Bamford. 2015. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environmental Science & Policy 51: 137–148.

    Article  Google Scholar 

  • Teal, J.M., and M.P. Weinstein. 2002. Ecological engineering, design, and construction considerations for marsh restorations in Delaware Bay, USA. Ecological Engineering 18 (5): 607–618.

    Article  Google Scholar 

  • TEEB (The Economics of Ecosystems and Biodiversity). 2008. The economics of ecosystems and biodiversity. An interim report. Cambridge: Banson.

    Google Scholar 

  • Turner, R.K., J. Paavola, P. Cooper, et al. 2003. Valuing nature: Lessons learned and future research directions. Ecological Engineering 46: 493–510.

    Google Scholar 

  • United States Army Corps of Engineers (USACOE). 2015. North Atlantic coast comprehensive study: Resilient adaption to increasing risk, final report. Planning Analyses, January: Appendix C.

    Google Scholar 

  • Van Coppenolle, R., C. Schwarz, and S. Temmerman. 2018. Contribution of mangroves and salt marshes to nature-based mitigation of coastal flood risks in major deltas of the world. Estuaries and Coasts 41 (6): 1699–1711.

    Article  Google Scholar 

  • Van Ledden, M., H.J. Lansen, Ridder, et al. 2012. Reconnaissance level study Mississippi storm surge barrier. ASCE, Proceedings Coastal Engineering Conference, Santander, Spain.

  • Wainright, S.A., M.P. Weinstein, K.W. Able, et al. 2000. Relative importance of benthic microalgae, phytoplankton and detritus of smooth cordgrass (Spartina) and the common reed (Phragmites) to brackish marsh food webs. Marine Ecology Progress. Series 200: 77–91.

    Article  CAS  Google Scholar 

  • Waltham, N.J., C. Alcott, M. Barbeau, et al. 2021. Tidal wetland restoration optimism in rapidly changing climate and seascape. Estuaries and Coasts (this issue).

  • Weinstein, M.P., and J.H. Balletto. 1999. Does the common reed, Phragmites australis reduce essential habitat for fishes? Estuaries 22 (3B): 793–802.

    Article  Google Scholar 

  • Weinstein, M.P., and S.Y. Litvin. 2016. Macro-restoration of tidal wetlands: A whole estuary approach. Restoration Ecology 34 (1): 27–38.

    Article  Google Scholar 

  • Weinstein, M.P., K.R. Philipp, and P. Goodwin. 2000. Catastrophes, near-catastrophes and the bounds of expectation: Wetland restoration on a macroscale. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 777–804. Dortrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Weinstein, M.P., J.M. Teal, J.H. Balletto, and K.A. Strait. 2001. Restoration principles emerging from one of the world’s largest tidal marsh restoration projects. Wetlands Ecology and Management 9 (5): 387–407.

    Article  Google Scholar 

  • Weinstein, M.P., J.R. Keough, G.R. Gutenspergen, and S.Y. Litvin. 2003. Phragmites australis: A sheep in wolf’s clothing? Estuaries 26 (2B): 397–637.

    Article  Google Scholar 

  • Weinstein, M.P., S.Y. Litvin, and V.G. Guida. 2005. Consideration of habitat linkages, estuarine landscapes and the trophic spectrum in wetland restoration design. Journal of Coastal Research 40: 51–63.

    Google Scholar 

  • Weinstein, M.P., R.C. Baird, D.O. Conover, M. Gross, J. Keulartz, D.K. Loomis, Z. Naveh, S.B. Peterson, D.J. Reed, E. Roe, R.L. Swanson, J.A.A. Swart, J.M. Teal, R.E. Turner, and H.J. van der Windt. 2007. Managing coastal resources in the 21st century. Frontiers in Ecology & the Environnment. 5 (1): 43–48.

    Article  Google Scholar 

  • Weinstein, M.P., S.Y. Litvin, and V.G. Guida. 2009. Essential fish habitat and wetland restoration success: A tier III approach to the biochemical condition of the common mummichog, Fundulus heteroclitus in common reed, Phragmites australis and smooth cordgrass, Spartina alterniflora dominated salt marshes. Estuaries and Coasts 32 (5): 1011–1022.

    Article  CAS  Google Scholar 

  • Weinstein, M.P., S.Y. Litvin, and V.G. Guida. 2010. Stable isotope and biochemical composition of white perch (Morone americanus) in a Phragmites dominated salt marsh and adjacent waters. Wetlands 30 (6): 1181–1191.

    Article  Google Scholar 

  • Weinstein, M.P., S.Y. Litvin, and M.G. Frisk. 2012. Reversing two centuries of wetland degradation: can scince better inform policy and practice? In Sustainabilkity Science: the emerging paradigm and the urban environment, ed. M.P. Weinstein and R.E. Turner, 53–82. New York: Springer.

    Chapter  Google Scholar 

  • Weinstein, M.P., S.Y. Litvin, and J.M. Krebs. 2014. Restoration ecology: Ecological fidelity, restoration metrics, and a systems perspective. Ecological Engineering 65: 71–87.

    Article  Google Scholar 

  • Weinstein, M.P., R. Hazen, and S.Y. Litvin. 2019. Response of nekton to tidal salt marsh restoration, a meta-analysis of restoration trajectories. Wetlands 39: 575–585.

    Article  Google Scholar 

  • zu Ermgassen, et al. 2021. Valuation, social and human dimensions in tidal marsh ecology. Estuaries and Coasts (this issue).

Download references

Funding

The New Jersey Sea Grant Consortium funded this project: grant number SG 6710-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Weinstein.

Additional information

Communicated by Steven Litvin

Communicated by Steven Litvin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinstein, M.P., Guo, Q. & Santasieri, C. Protecting People and Property While Restoring Coastal Wetland Habitats. Estuaries and Coasts 44, 1710–1721 (2021). https://doi.org/10.1007/s12237-021-00900-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-00900-x

Keywords

Navigation