Skip to main content

Advertisement

Log in

The First Successful Report: Control of Browning Problem in in vitro Culture of Iranian Seedless Barberry, a Medicinally Important Species

Ein erster Erfahrungsbericht: Die Regulierung des Verbräunungsproblems bei der In-Vitro-Kultur der iranischen kernlosen Berberitze, einer für die Medizin wichtigen Species

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

The current study was aimed to solve the problem of browning in Iranian seedless barberry in vitro culture by using a variety of different approaches. As such, several experiments were carried out. The results revealed that addition of 225 mg/l citric acid + 50 mg/l ascorbic acid could alleviate phenol browning compared to control. Presoaking of explants in 300 mg/l citric acid solution for 30 min and culturing them in media containing 225 mg/l citric acid could further reduce browning rate. Results related to the effect of sampling time indicated that explants cut off in April showed the lowest browning rate and those cut off in January, February and March showed the highest browning rate. Effects of conditions related to stock plant were also investigated, and the results displayed that explants harvested from upper position of current-year shoot and sucker showed the lowest browning rates, respectively, while those collected from lower position of one- and two-year old shoots exhibited the highest browning rate, respectively. Data obtained from shoot color and diameter also demonstrated that explants taken from pinkish-colored shoots with small diameter showed the lowest browning rate and those collected from dark brown-colored shoots with large and very large diameter contained the highest browning rates. Use of 8‑hydroxyquinoline and Fe-EDDHA for reduction of browning was investigated for the first time, and interestingly the results showed that both compounds, in particular 8‑hydroxyquinoline, caused a significant reduction in phenol exudation. More interestingly, they could cause a significant increase in bud break rate. Furthermore, phenol exudation and peroxidase activity in treatments supplemented with 8‑hydroxyquinoline and Fe-EDDHA were lower than those in treatments containing antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arayne MS, Sultana N, Bahadur SS (2007) The berberis story: Berberis vulgaris in therapeutics. Pak J Pharm Sci 20:83–92

    CAS  PubMed  Google Scholar 

  • Arora K, Sharma M, Srivastava J, Ranade SA, Sharma AK (2010) Rapid in vitro cloning of a 40-year-old tree of Azadirachta indica A. Juss.(Neem) employing nodal stem segments. Agrofor Syst 78:53

    Article  Google Scholar 

  • Asai M, Iwata N, Yoshikawa A, Aizaki Y, Ishiura S, Saido TC, Maruyama K (2007) Berberine alters the processing of Alzheimer’s amyloid precursor protein to decrease Aβ secretion. Biochem Biophys Res Commun 352:498–502

    Article  CAS  PubMed  Google Scholar 

  • Azizi M, Aghabozorgi M, Farsi M, Tehranifar A, ZolAli J, Ghabooli M (2007) Study of rooting some horticultural plants inoculated with Agrobacterium rhizogenes. J Agric Sci Technol 21:79–87

    Google Scholar 

  • Balandary A, Kafi M (2001) Berberis production and processing. Zaban va Adab Press, Mashhad

    Google Scholar 

  • Bhatt ID, Dhar U (2004) Factors controlling micropropagation of Myrica esculenta buch.–Ham. ex D. Don: a high value wild edible of Kumaun Himalaya. Afr J Biotechnol 3:534–540

    Article  CAS  Google Scholar 

  • Biedermann IEG (1985) Factors affecting establishment and development of Magnolia hybrids in vitro. In: Symposium on In Vitro Problems Related to Mass Propagation of Horticultural Plants, vol 212, pp 625–630

    Google Scholar 

  • Bodiwala HS, Sabde S, Mitra D, Bhutani KK, Singh IP (2011) Synthesis of 9‑substituted derivatives of berberine as anti-HIV agents. Eur J Med Chem 46:1045–1049

    Article  CAS  PubMed  Google Scholar 

  • Chandra R, Padaria JC, Srivastava S (2004) Factors influencing in vitro establishment of mango shoot buds. Indian J Plant Physiol 9:136–144

    Google Scholar 

  • Chaturvedi R, Razdan MK, Bhojwani SS (2004) In vitro clonal propagation of an adult tree of neem (Azadirachta indica A. Juss.) by forced axillary branching. Plant Sci 166:501–506

    Article  CAS  Google Scholar 

  • Chavan SS, Ranade SS, Deore AC, Deshpande RS, Dhonukshe BL (2000) Cloning of Alphonso mango through vegetative explants. Ann Plant Physiol 14:178–181

    Google Scholar 

  • Christiansen J, Fonnesbech M (1975) Prevention by polyvinylpyrrolidone of growth inhibition of Hamamelis shoot tips grown in vitro and of browning of the agar medium. In: Symposium on Propagation in Arboriculture, vol 54, pp 101–104

    Google Scholar 

  • Crippen DD, Morrison JC (1986) The effects of sun exposure on the compositional development of Cabernet Sauvignon berries. Am J Enol Vitic 37:235–242

    Article  CAS  Google Scholar 

  • Dalal NV, Rai RV (2001) In vitro propagation of Ochreinauclea missionis (Wall. EX G. Don), an ethnomedicinal endemic and threatened tree. In Vitro Cell Dev Biol 37:820–823

    Article  CAS  Google Scholar 

  • Desai P, Patil G, Dholiya B, Desai S, Patel F, Narayanan S (2018) Development of an efficient micropropagation protocol through axillary shoot proliferation for pomegranate variety ‘Bhagwa. Ann Agrar Sci 16:444–450

    Article  Google Scholar 

  • Dhavala A, Rathore TS (2010) Micropropagation of Embelia ribes Burm f. through proliferation of adult plant axillary shoots. In Vitro Cell Dev Biol 46:180–191

    Article  Google Scholar 

  • van Doorn WG, Schurer K, de Witte Y (1989) Role of endogenous bacteria in vascular blockage of cut rose flowers. J Plant Physiol 134:375–381

    Article  Google Scholar 

  • Ebrahimi-Mamaghani M, Arefhosseini SR, Golzarand M, Aliasgarzadeh A, Vahed-Jabbary M (2009) Long-term effects of processed Berberis vulgaris on some metabolic syndrome components. Iran J Endocrinol Metab 11:41–47

    Google Scholar 

  • Fatehi M, Saleh TM, Fatehi-Hassanabad Z, Farrokhfal K, Jafarzadeh M, Davodi S (2005) A pharmacological study on Berberis vulgaris fruit extract. J Ethnopharmacol 102:46–52

    Article  PubMed  Google Scholar 

  • George EF (1996) Plant propagation by tissue culture. Part 2: in practice. Springer, Dordrecht

    Google Scholar 

  • Hsia C‑N, Korban SS (1996) Factors affecting in vitro establishment and shoot proliferation of Rosa hybrida L. and Rosa chinensis minima. In Vitro Cell Dev Biol 32:217–222

    Article  Google Scholar 

  • Huang L‑C, Lee Y‑L, Huang B‑L, Kuo CI, Shaw JF (2002) High polyphenol oxidase activity and low titratable acidity in browning bamboo tissue culture. In Vitro Cell Dev Biol 38:358

    Article  CAS  Google Scholar 

  • Krishna H, Sairam RK, Singh SK, Patel VB, Sharma RR, Grover M, Nain L, Sachdev A (2008) Mango explant browning: effect of ontogenic age, mycorrhization and pre-treatments. Sci Hortic 118:132–138

    Article  Google Scholar 

  • Leal DR, Sánchez-Olate M, Avilés F, Materan ME, Uribe M, Hasbún R, Rodríguez R (2007) Micropropagation of Juglans regia L. In: Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 381–390

    Chapter  Google Scholar 

  • Martin G, Geetha SP, Raja SS, Raghu AV, Balachandran I, Ravindran PN (2006) An efficient micropropagation system for Celastrus paniculatus Willd.: a vulnerable medicinal plant. J For Res 11:461–465

    Article  Google Scholar 

  • Mohammadi M, Bagheri A, Marashi H, Moshtaghi N, Balandari A (2011) Investigation into seasonal effect and browning inhibitor on callus regeneration of seedless barberry (Berberis vulgaris var. asperma). Plant Tissue Cult Biotechnol 21:161–168

    Article  Google Scholar 

  • Mole S, Waterman S (1994) Analysis of phenolic plant metabolites. Blackwell Scientific, Oxford, Boston

    Google Scholar 

  • Naik SK, Pattnaik S, Chand PK (1999) In vitro propagation of pomegranate (Punica granatum L. cv. Ganesh) through axillary shoot proliferation from nodal segments of mature tree. Sci Hortic 79:175–183

    Article  CAS  Google Scholar 

  • Patil VM, Dhande GA, Thigale DM, Rajput JC (2011) Micropropagation of pomegranate (Punica granatum L.) ‘Bhagava’cultivar from nodal explant. Afr J Biotechnol 10:18130–18136

    CAS  Google Scholar 

  • Pérez-Tornero O, Burgos L (2007) Apricot micropropagation. In: Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 267–278

    Chapter  Google Scholar 

  • Phulwaria M, Ram K, Gahlot P, Shekhawat NS (2011) Micropropagation of Salvadora persica—a tree of arid horticulture and forestry. New For 42:317–327

    Article  Google Scholar 

  • Phulwaria M, Ram K, Gupta AK, Shekhawat NS (2012) Micropropagation of mature Terminalia catappa (Indian Almond), a medicinally important forest tree. J For Res 17:202–207

    Article  CAS  Google Scholar 

  • Prasad RN, Chaturvedi HC (1988) Effect of season of collection of explants on micropropagation of Chrysanthemum morifolium. Biol Plant 30:20–24

    Article  Google Scholar 

  • Raghuvanshi SS, Srivastava A (1995) Plant regeneration of Mangifera indica using liquid shaker culture to reduce phenolic exudation. Plant Cell Tissue Organ Cult 41:83–85

    Article  CAS  Google Scholar 

  • Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010) Biotechnological advances in guava (Psidium guajava L.): recent developments and prospects for further research. Trees 24:1–12

    Article  CAS  Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswal U (2009) Shoot multiplication and plant regeneration of guava (Psidium guajava L.) from nodal explants of in vitro raised plantlets. J Fruit Ornam Plant Res 17:29–38

    CAS  Google Scholar 

  • Ram K, Shekhawat NS (2011) Micropropagation of commercially cultivated Henna (Lawsonia inermis) using nodal explants. Physiol Mol Biol Plants 17:281–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadasivam S, Manickam A (1996) Biochemical methods. New Age International, New Delhi

    Google Scholar 

  • Sharma SK, Ramamurthy V (2000) Micropropagation of 4‑year-old elite Eucalyptus tereticornis trees. Plant Cell Rep 19:511–518

    Article  CAS  PubMed  Google Scholar 

  • Shibli RA, Mohammad MJ, Ajlouni ZI (2002) Growth and micronutrient acquisition of in vitro grown bitter almond and sour orange in response to iron concentration from different iron chelates. J Plant Nutr 25:1599–1606

    Article  CAS  Google Scholar 

  • Stasinopoulos TC, Hangarter RP (1990) Preventing photochemistry in culture media by long-pass light filters alters growth of cultured tissues. Plant Physiol 93:1365–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabiyeh DT, Bernard F, Shacker H (2005) Investigation of glutathione, salicylic acid and GA3 effects on browning in Pistacia vera shoot tips culture. In: IV International Symposium on Pistachios and Almonds, pp 201–204

    Google Scholar 

  • Tao F, Zhang Z, Zhou J, Yao N, Wang DM (2007) Contamination and browning in tissue culture of Platanus occidentalis L. For Stud China 9:279–282

    Article  Google Scholar 

  • Van der Salm TPM, Van der Toorn CJG, ten Cate CHH et al (1994) Importance of the iron chelate formula for micropropagation of Rosa hybrida L. ‘Moneyway’. Plant Cell Tissue Organ Cult 37:73–77

    Article  CAS  Google Scholar 

  • Verma AK, Prasad KV, Singh SK, Kumar S (2012) In vitro isolation of red coloured mutant from chimeric ray florets of chrysanthemum induced by gamma-ray. Indian J Hort 69:562–567

    Google Scholar 

  • Wang Q, Tang H, Quan Y, Tang YQ (1994) Phenol induced browning and establishment of shoot-tip expiants of ‘Fuji’ apple and ‘Jinhua’ pear cultured in vitro. J Hortic Sci 69:833–839

    Article  CAS  Google Scholar 

  • Yin J, Ye J, Jia W (2012) Effects and mechanisms of berberine in diabetes treatment. Acta Pharm Sin B 2:327–334

    Article  CAS  Google Scholar 

  • Zhong MQ, Lou CF, Tan JZ (2002) Function of AgNO3 during mulberry genetic translation. J Trop Subtrop Plant 10(1):74–76 (in Chinese with an English abstract)

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Abedy.

Ethics declarations

Conflict of interest

R.N.M. Aghayeh, B. Abedy, A. Balandari, L. Samiei and A. Tehranifar declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghayeh, R.N.M., Abedy, B., Balandari, A. et al. The First Successful Report: Control of Browning Problem in in vitro Culture of Iranian Seedless Barberry, a Medicinally Important Species. Erwerbs-Obstbau 63, 319–329 (2021). https://doi.org/10.1007/s10341-021-00574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-021-00574-6

Keywords

Schlüsselwörter

Navigation