Skip to main content
Log in

Pathways and timescales associated with nitrogen transport from septic systems in coastal aquifers intersected by canals

Cheminements et échelles de temps associés au transfert de l’azote depuis des fosses septiques dans des aquifères côtiers traversés par des canaux

Trayectorias y escalas de tiempo asociadas al transporte de nitrógeno desde sistemas sépticos en acuíferos costeros interceptados por canales

沟渠切割的沿海含水层中化粪池系统氮运移的路径和时间尺度

Caminhos e escalas de tempo associados ao transporte de nitrogênio de sistemas sépticos em aquíferos costeiros interceptados por canais

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Septic systems located near coastal waterways can contribute to nutrients that lead to eutrophication, harmful algal blooms, and high levels of fecal coliforms such as E. coli. This study defines pathways and timescales of nitrogen transport released from septic systems using a groundwater-flow and nitrogen transport model of a coastal subdivision connected to 2,000 septic systems and dissected by a dense network of canals. Lift station effluent data are used as a proxy to quantify average household septic nitrogen and fluid contributions of 11 kg/year and 160 m3/year, respectively. These fluxes are upscaled and applied to five sewer conversion zones, each having a known number of septic systems. Model results provide a basis for assessing nitrogen transport timescales associated with (1) coastal groundwaters for regions with high septic density near the coastline and (2) groundwater–canal interaction. Timescales associated with nitrogen removal by natural groundwater flow in a sandy surficial aquifer, following septic to sewer conversion, are predicted by the model to be on the order of 2–3 years for 50% reduction and 8–10 years for 90% reduction. Both numerical and collected field data indicate that canals significantly influence groundwater flow and have the potential to convey nitrogen to coastal waters at rates several orders of magnitude higher than introduced by submarine discharge along the coast. Pre and post sewer conversion data on nitrate and total nitrogen in shallow groundwater from a nearby field site, obtained post-model development, support the nitrogen concentrations and timescales predicted by the numerical model.

Résumé

Les fosses septiques situées à proximité des voies d’eau côtières peuvent constituer une source de nutriments qui mènent à l’eutrophisation, à la prolifération d’algues nuisibles et à des taux élevés de coliformes fécaux tels que E. coli. La présente étude définit les cheminements et les échelles de temps du transfert de l’azote relargué par les fosses septiques, grâce à un modèle d’écoulement des eaux souterraines et de transfert de l’azote, dans une subdivision côtière connectée à 2,000 fosses septiques et traversée par un réseau dense de canaux. Les données sur l’effluent d’une station de relevage sont utilisées en première approximation pour quantifier les apports en azote et en fluides septiques d’une habitation moyenne, respectivement de 11 kg/an et 160 m3/an. Ces flux sont extrapolés et appliqués à cinq zones d’aménagement de réseaux d’égouts, chacun ayant un nombre connu de fosses septiques. Les résultats du modèle fournissent une base pour évaluer les échelles de temps du transfert de l’azote en rapport avec (1) des eaux souterraines côtières dans les régions à forte densité de fosses septiques à proximité du littoral et (2) l’interaction eaux souterraines – canaux. Les échelles de temps relatives à l’élimination de l’azote par l’écoulement naturel des eaux souterraines dans un aquifère sableux superficiel, après la conversion des fosses septiques en réseau d’égouts, sont prédites par le modèle comme étant de l’ordre de 2−3 ans pour 50% de réduction et de 8–10 ans pour 90% de réduction. Les données numériques, comme les données recueillies sur le terrain, indiquent que les canaux influencent considérablement l’écoulement des eaux souterraines et ont la capacité de transporter l’azote vers les eaux côtières à des taux de plusieurs ordres de grandeur plus élevés que ceux introduits par les rejets sous-marins tout au long du littoral. Les données qui précèdent et suivent l’aménagement de réseau d’égouts, qui ont trait à l’azote et au nitrate total dans les eaux souterraines peu profondes dérivés d’un site de terrain proche et qui sont obtenues grâce au développement du modèle, corroborent les concentrations et les échelles de temps de l’azote prédites par le modèle numérique.

Resumen

Los sistemas sépticos ubicados cerca de las corrientes de agua costeras pueden contribuir a los nutrientes que conducen a la eutrofización, la proliferación de algas nocivas y los altos niveles de coliformes fecales como E. coli. Este estudio define las trayectorias y las escalas de tiempo del transporte de nitrógeno liberado por los sistemas sépticos utilizando un modelo de flujo de aguas subterráneas y de transporte de nitrógeno de una subdivisión costera conectada a 2,000 sistemas sépticos y diseccionada por una densa red de canales. Los datos de los efluentes de las estaciones de bombeo se utilizan como aproximación para cuantificar las contribuciones medias de nitrógeno y fluidos de los sistemas sépticos de los domicilios, que son de 11 kg/año y 160 m3/año, respectivamente. Estos flujos se amplían y se aplican a cinco zonas de conversión de alcantarillado, cada una con un número conocido de sistemas sépticos. Los resultados del modelo proporcionan una base para evaluar las escalas de tiempo del transporte de nitrógeno asociadas con (1) las aguas subterráneas costeras para las regiones con alta densidad de sistemas sépticos cerca de la línea de costa y (2) la interacción agua subterránea-canal. Las escalas de tiempo asociadas a la eliminación de nitrógeno por el flujo natural de las aguas subterráneas en un acuífero superficial arenoso, tras la conversión de las fosas sépticas en alcantarillado, son predichas por el modelo del orden de 2–3 años para una reducción del 50% y de 8–10 años si la reducción es del 90%. Tanto los datos numéricos como los recogidos sobre el terreno indican que los canales influyen significativamente en el flujo de las aguas subterráneas y tienen el potencial de transportar el nitrógeno a las aguas costeras a tasas de varios órdenes de magnitud superiores a las introducidas por la descarga submarina a lo largo de la costa. Los datos anteriores y posteriores a la conversión del alcantarillado sobre el nitrato y el nitrógeno total en las aguas subterráneas poco profundas de un sitio de campo cercano, obtenidos después del desarrollo del modelo, apoyan las concentraciones de nitrógeno y las escalas de tiempo predichas por el modelo numérico.

摘要

沿海水道附近的化粪池系统可以提供营养, 从而导致富营养化, 有害藻华和大量粪便大肠菌群(如大肠杆菌)。这项研究利用与2,000个化粪池系统相连并由密集的沟渠网络切割的沿海分区的地下水流和氮运移模型, 定义了化粪池系统释放的氮运移的路径和时间尺度。提升站出水量来表示11 kg/year平均家庭污水氮和160 m3/year液体的产生量。该通量按比例放大并应用于五个下水道转换区, 每个转换区都有已知数量的化粪池系统。模型结果为评估与(1)海岸线化粪池密度高的地区的沿海地下水和(2)地下水-沟渠相互作用相关的氮运移的时间尺度提供了基础。化粪池经下水道转换后, 模型预测的与砂质表层含水层中天然地下水流脱氮相关的时间尺度为2–3年(减少50%)和8–10年(减少90%)。数值模拟和采集的现场数据都表明, 沟渠显著影响地下水流, 并有可能以比沿海海底排泄高几个数量级的速率将氮输送到沿海水域。模型开发后获得的场地附近浅层地下水中硝酸盐和总氮的下水道转换前后数据, 支撑了数值模型所预测的氮浓度和时间尺度。

Resumo

Os sistemas sépticos localizados perto de cursos de água costeiros podem contribuir com nutrientes que levam à eutrofização, proliferação de algas nocivas e altos níveis de coliformes fecais, como E. coli. Este estudo define caminhos e escalas de tempo de transporte de nitrogênio liberado de sistemas sépticos usando um modelo de fluxo de água subterrânea e transporte de nitrogênio de uma subdivisão costeira conectada a 2,000 sistemas sépticos e dissecados por uma densa rede de canais. Os dados de efluentes da estação elevatória são usados ​​como um substituto para quantificar o nitrogênio séptico doméstico médio e as contribuições de fluido de 11 kg/ano e 160 m3/ano, respectivamente. Esses fluxos são aumentados e aplicados a cinco zonas de conversão de esgoto, cada uma com um número conhecido de sistemas sépticos. Os resultados do modelo fornecem uma base para avaliar as escalas de tempo de transporte de nitrogênio associadas com (1) águas subterrâneas costeiras para regiões com alta densidade séptica perto da linha costeira e (2) água subterrânea - interação do canal. As escalas de tempo associadas com a remoção de nitrogênio pelo fluxo natural de água subterrânea em um aquífero superficial arenoso, após a conversão séptica em esgoto, são previstas pelo modelo como sendo da ordem de 2–3 anos para redução de 50% e 8–10 anos para redução de 90%. Os dados de campo numéricos e coletados indicam que os canais influenciam significativamente o fluxo das águas subterrâneas e têm o potencial de transportar nitrogênio para as águas costeiras a taxas várias ordens de magnitude mais altas do que as introduzidas pela descarga submarina ao longo da costa. Os dados de conversão pré e pós esgoto sobre nitrato e nitrogênio total em águas subterrâneas rasas de um local de campo próximo, obtidos após o desenvolvimento do modelo, suportam as concentrações de nitrogênio e escalas de tempo previstas pelo modelo numérico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almasri MN, Kaluarachchi JJ (2007) Modeling nitrate contamination of groundwater in agricultural watersheds. J Hydrol 343:211–229. https://doi.org/10.1016/j.jhydrol.2007.06.016

    Article  Google Scholar 

  • American Ground Water Trust (AGT) (1998) Septic systems for wastewater disposal. https://agwt.org/content/septic-systems. Accessed 20 April 2020

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726. https://doi.org/10.1007/BF02804901

    Article  Google Scholar 

  • Badruzzaman M, Pinzon J, Oppenheimer J, Jacangelo JG (2012) Sources of nutrients impacting surface waters in Florida: a review. J Environ Manag 109:80–92. https://doi.org/10.1016/j.jenvman.2012.04.040

    Article  Google Scholar 

  • Bedekar V, Morway ED, Langevin CD, Tonkin M (2016) MT3D-USGS version 1: a US Geological Survey release of MT3DMS updated with new and expanded transport capabilities for use with MODFLOW. US Geol Survey Tech Methods 6-A:53–69

    Google Scholar 

  • Bhatnagar A, Kumar E, Sillanpää M (2010) Nitrate removal from water by nano-alumina: characterization and sorption studies. Chem Eng J 163:317–323. https://doi.org/10.1016/j.cej.2010.08.008

    Article  Google Scholar 

  • Brand LE, Compton A (2007) Long-term increase in Karenia brevis abundance along the Southwest Florida coast. Harmful Algae 6:232–252. https://doi.org/10.1016/j.hal.2006.08.005

    Article  Google Scholar 

  • Bowen JL, Valiela I (2004) Nitrogen loads to estuaries: using loading models to assess the effectiveness of management options to restore estuarine water quality. Estuaries 27:482–500. https://doi.org/10.1007/BF02803540

    Article  Google Scholar 

  • Coastal and Heartland National Estuary Partnership (CHNEP) (2019) Water atlas. http://chnep.wateratlas.usf.edu/bay/waterquality.asp?wbodyid=330000&wbodyatlas=bay. Accessed 20 December 2019

  • Cogger CG, Carlile BL (1984) Field performance of conventional and alternative septic systems in wet soils. J Environ Qual 13:137–142. https://doi.org/10.2134/jeq1984.00472425001300010025x

    Article  Google Scholar 

  • Conley DJ, Howarth HW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323A:1014–1015. https://doi.org/10.1126/science.1167755

    Article  Google Scholar 

  • Costa JE, Heufelder G, Foss S, Milham NP, Howes B (2002) Nitrogen removal efficiencies of three alternative septic system technologies and a conventional septic system. Environ Cape Cod 5:15–23

    Google Scholar 

  • Doherty J (2015) Calibration and uncertainty analysis for complex environmental models. Watermark, Brisabane, Australia

    Google Scholar 

  • Froelich PN, Kaul LW, Byrd JT, Andreae MO, Roe KK (1985) Arsenic, barium, germanium, tin, dimethylsulfide and nutrient biogeochemistry in Charlotte Harbor, Florida, a phosphorus-enriched estuary. Estuar Coast Shelf Sci 20:239–264. https://doi.org/10.1016/0272-7714(85)90041-1

    Article  Google Scholar 

  • Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey modular ground-water model: the Ground-Water Flow Process. US Geol Surv Techniques Methods 6-A16

  • Harden H, Chanton J, Hicks R, Wade E (2010) Wakulla County Septic Tank Study Phase II report on performance based treatment systems. Florida State University Department of Earth, Ocean and Atmospheric Science, Tallahassee, FL

  • Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51(a, part 2):364–376. https://doi.org/10.4319/lo.2003.51.1_part_2.0364

    Article  Google Scholar 

  • Lambert MJ, Burnett WC (2003) Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements. Biogeochemistry 66:55–73. https://doi.org/10.1023/b:biog.0000006057.63478.fa

    Article  Google Scholar 

  • Landsburg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390. https://doi.org/10.1080/20026491051695

    Article  Google Scholar 

  • Landsberg J, Flewelling L, Naar J (2009) Karenia brevis red tides, brevetoxins in the food web, and impacts on natural resources: decadal advancements. Harmful Algae 8:598–607. https://doi.org/10.1016/j.hal.2008.11.010

    Article  Google Scholar 

  • Lapointe BE (1987) Phosphorus- and nitrogen-limited photosynthesis and growth of Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys: an experimental field study. Mar Biol 93:561–568. https://doi.org/10.1007/bf00392794

    Article  Google Scholar 

  • Lapointe BE, Clark MW (1992) Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries 15:465–476. https://doi.org/10.2307/1352391

    Article  Google Scholar 

  • LaPointe BE, Barile PJ, Matzie WR (2004) Anthropogenic nutrient enrichment of seagrass and coral reef communities in the lower Florida Keys: discrimination of local versus regional nitrogen sources. J Exp Mar Biol Ecol 308:23–58

    Article  Google Scholar 

  • Lapointe BE, Herren LW, Debortoli DD, Vogel MA (2015) Evidence of sewage-driven eutrophication and harmful algal blooms in Florida’s Indian River lagoon. Harmful Algae 43:82–102. https://doi.org/10.1016/j.hal.2015.01.004

    Article  Google Scholar 

  • LaPointe BE, Herren L, Paule A, Sleeman A, Brewton R (2016) Charlotte County water quality assessment. Florida Atlantic University, Boca Raton, FL, pp 3–40

    Google Scholar 

  • Lipp EK, Farrah SA, Rose JB (2001) Assessment and impact of microbial fecal pollution and human enteric pathogens in a coastal community. Mar Pollut Bull 42:286–293. https://doi.org/10.1016/s0025-326x(00)00152-1

    Article  Google Scholar 

  • Mallin MA (2013) Septic systems in the coastal environment: multiple water quality problems in many areas. In: Ahuja S (ed) Monitoring water quality, quality: pollution assessment, analysis and remediation. Elsevier, Amsterdam, pp 81–102

    Chapter  Google Scholar 

  • Mansfield G (1942) Phosphorous resources of Florida. US Geol Surv Bull 934:3–10 https://pubs.usgs.gov/bul/0934/report.pdf

    Google Scholar 

  • McIsaac GF, David MB, Gertner GZ, Goolsby DA (2001) Eutrophication: nitrate flux in the Mississippi River. Nature 414:166–167

    Article  Google Scholar 

  • McPherson BF, Miller RL, Stoker YE (1996) Physical, chemical, and biological characteristics of the Charlotte Harbor basin and estuarine system in southwestern Florida: a summary of the 1982–89 US Geological Survey Charlotte Harbor assessment and other studies. US Geol Surv Water Suppl Pap 2486. https://doi.org/10.3133/wsp248

  • Meeroff DE, Bloetscher F, Bocca T et al (2008) Evaluation of water quality impacts of on-site treatment and disposal systems on urban coastal waters. Water Air Soil Pollut 192:11–24. https://doi.org/10.1007/s11270-008-9630-2

    Article  Google Scholar 

  • Mote Marine Laboratory (MML) (1997) The state of Charlotte Harbor, Florida, its adjacent inland waters and watershed: a characterization report for the Charlotte Harbor National Estuary Program. Technical Report 505, Mote Marine Laboratory, Sarasota, FL

  • Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219. https://doi.org/10.1080/00785236.1995.10422044

    Article  Google Scholar 

  • Paul JH, McLaughlin MR, Griffin DW et al (2000) Rapid movement of wastewater from on-site disposal systems into surface waters in the lower Florida Keys. Estuaries 23:662–668. https://doi.org/10.2307/1352892

    Article  Google Scholar 

  • Pierce RH (1986) Red tide (Ptychodiscus brevis) toxin aerosols: a review. Toxicon 24:955–965. https://doi.org/10.1016/0041-0101(86)90001-2

    Article  Google Scholar 

  • Pierce RH, Henry MS (2008) Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems. Ecotoxicology 17:623–631. https://doi.org/10.1007/s10646-008-0241-x

    Article  Google Scholar 

  • Poli M, Mende TJ, Baden D (1986) Brevetoxins, unique activators of voltage-sensitive sodium channels bind to specific sites in rat synaptosomes. Mol Pharmacol 30:129–135

    Google Scholar 

  • Pollock DW (2016) User guide for MODPATH Version 7: a particle-tracking model for MODFLOW. US Geol Surv Open-File Rep 2016–1086. https://doi.org/10.3133/ofr20161086

  • Reeves DM, Parashar R, Pohlman K, Russell C, Chapman J (2014) Development and calibration of dual-permeability flow models with discontinuous fault networks. Vadose Zone J 13(8):vzj2013 10.0183

    Article  Google Scholar 

  • Shaddox TW, Unruh JB (2018) The fate of nitrogen applied to Florida Turfgrass. University of Florida IFAS, Gainesville, FL

    Google Scholar 

  • Schindler DW (1974) Eutrophication and recovery in experimental lakes: implications for lake management. Science 184:897–899. https://doi.org/10.1126/science.184.4139.897

    Article  Google Scholar 

  • Seiler RL (1996) Methods for identifying sources of nitrogen contamination of ground water in valleys in Washoe County, Nevada. US Geol Surv Open-File Rep 96–461

  • Tetra Tech Inc., Johnson Engineering Inc. (2020) Updated water quality review within East and West Spring Lakes. Charlotte County Utilities, Port Charlotte, FL

  • Tilley E, Ulrich L, Luthi C, Reymond P, Zurburgg C (2014) Compendium of sanitation systems and technologies. Dübendorf Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland

  • Tomasko DA, Bristol DL, Ott JA (2001) Assessment of present and future nitrogen loads, water quality, and seagrass (Thalassia testudinum) depth distribution in Lemon Bay, Florida. Estuaries 24:926–938. https://doi.org/10.2307/1353183

    Article  Google Scholar 

  • Torres AE, Sacks LA, Yobbi DK, Knochenus LA, Katz BG (2001) Hydrogeologic framework and geochemistry of the Intermediate aquifer system in parts of Charlotte, De Soto, and Sarasota Counties, Florida. US Geol Surv Water Resour Invest Rep 2001–4015

  • Vargo GA, Heil CA, Ault DN, Neely MB, Murasko S, Havens J, Lester KM, Dixon LK, Merkt R, Walsh J, Weisberg R, Steidinger KA (2004) Harmful Algae 2002. Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography and Intergovernmental Oceanographic Commission of UNESCO. Four Karenia brevis blooms: A comparative analysis pp 14–16. https://myfwc.com/media/13103/xhab_introductory_material.pdfhttps://myfwc.com/media/13111/xhab_plenary_ecology.pdf

  • Wolansky RM (1983) Hydrogeology of the Sarasota-Port Charlotte area, Florida. US Geol Surv Water Resour Invest Rep 82-4089

  • Zhang MK, He ZL, Calvert DV, Stoffella PJ, Li YC, Lamb EM (2002) Release potential of phosphorus in Florida sandy soils in relation to phosphorus fractions and adsorption capacity. J Environ Sci Health 37:793–809. https://doi.org/10.1081/ese-120003589

    Article  Google Scholar 

  • Zheng C, Wang PP (1998) MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems documentation and users guide. US Army Corps of Engineers, Washington, DC

Download references

Acknowledgements

TTB and DMR would like to thank the editor, J-M Lemieux, the associate editor, C. Gellasch, and two anonymous reviewers for their constructive comments, Charlotte County Utilities Director Craig Rudy for project funding, Ruta Vardys and Andreia Paulino of the CCUD for field site and technical support, Sandra Lavoie and the East Port Laboratory for water chemistry analyses and analytical support; and the Enterprise Charlotte Economic Council and Western Michigan University for seed funding.

Funding

The project was funded from two separate grants: the first a joint-grant from Enterprise Economic Council and Western Michigan University; the second from Charlotte County Utilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald M. Reeves.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buszka, T.T., Reeves, D.M. Pathways and timescales associated with nitrogen transport from septic systems in coastal aquifers intersected by canals. Hydrogeol J 29, 1953–1964 (2021). https://doi.org/10.1007/s10040-021-02362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02362-8

Keywords

Navigation