Skip to main content

Advertisement

Log in

Multiple-tracers-aided surface-subsurface hydrological modeling for detailed characterization of regional catchment water dynamics in Kumamoto area, southern Japan

Modélisation hydrologique de surface-subsurface appuyé par plusieurs traceurs pour une caractérisation détaillée de la dynamique des eaux du bassin régional de la zone de Kumamoto, sud du Japon

Modelización hidrológica superficial y subterránea con ayuda de múltiples trazadores para la caracterización detallada de la dinámica hídrica regional en las cuencas en la zona de Kumamoto, sur de Japón

日本南部Kumamoto地区区域流域水动力学详细特征的多示踪辅助地表水和地下水水文模拟

Modelagem hidrológica de subsuperfície e superfície auxiliada por múltiplos traçadores para caracterização detalhada da dinâmica da água de captação regional na área de Kumamoto, sul do Japão

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Integrated watershed modeling techniques have been applied in recent years to examine surface and subsurface interactions. Model performance is often evaluated by best fit of the hydrograph, which alone cannot explicitly explain whole catchment dynamics. To overcome this problem, this study incorporated multiple tracers (3H, 85Kr, and groundwater temperature) into a physically-based fully distributed modeling framework for characterizing regional-scale hydrological processes in Kumamoto, southern Japan. First, a simulation performed by a hydrometrically calibrated model showed satisfactory performance for river discharge and groundwater level. However, this model showed poor fitting for isotopic composition and temperature due to the structural uncertainty of the model. A new model was established reflecting recent deep bore log data and incorporating tracer data showed acceptable accuracy for hydrographs and tracers. Thus, more reliable estimates of groundwater storage, groundwater age and water flow paths were depicted over the regional catchment. Comparisons between the two models indicate that the model structure of an area with an uncertain lower boundary can be addressed by incorporating multiple tracer data. Tracer-aided models could be applied for a holistic understanding of contaminant transport dynamics besides flow simulation.

Résumé

Les techniques de modélisation intégrée de bassins versants ont été appliquées ces dernières années pour examiner les interactions entre eaux de surface et eaux souterraines. La performance des modèles est souvent évaluée par le meilleur ajustement à l’hydrogramme, ce qui ne peut pas à lui seul, expliquer la dynamique de l’ensemble du bassin. Pour surmonter ce problème, cette étude a intégré des traceurs multiples (3H, 85Kr, et température des eaux souterraines) dans un modèle distribué à base physique pour caractériser les processus hydrologiques à l’échelle régionale à Kumamoto, sud du Japon. D’abord, une simulation réalisée par un modèle calibré hydrométriquement a montré des performances satisfaisantes pour les débits de rivières et les niveaux piézométriques. Toutefois, ce modèle montre un mauvais ajustement pour la composition isotopique et la température du fait des incertitudes structurelles du modèle. Un nouveau modèle établi en prenant en compte des données de forages profonds récents et en intégrant des données de traçage a montré une précision acceptable pour les hydrogrammes et les traceurs. Ainsi, des estimations plus fiables du stockage des eaux souterraines, de l’âge des eaux souterraines et des voies d’écoulement de l’eau ont été décrites sur l’ensemble du bassin régional. Des comparaisons entre les deux modèles indiquent que la structure d’un modèle d’un secteur avec des limites inférieures incertaines peut être précisée en introduisant les données de plusieurs traceurs. Les modèles appuyés par des traceurs pourraient être appliqués pour une compréhension holistique de la dynamique du transport de contaminant en plus de la simulation des écoulements.

Resumen

En los últimos años se han aplicado técnicas de modelización integrada de cuencas hidrográficas para examinar las interacciones entre la superficie y el subsuelo. El rendimiento del modelo se evalúa a menudo por el mejor ajuste del hidrograma, que por sí solo no puede explicar explícitamente toda la dinámica de la cuenca. Para superar este problema, este estudio incorporó múltiples trazadores (3H, 85Kr, y temperatura de las aguas subterráneas) en un marco de modelado totalmente distribuido de base física para caracterizar los procesos hidrológicos a escala regional en Kumamoto, al sur de Japón. En primer lugar, una simulación realizada por un modelo calibrado hidrométricamente mostró un rendimiento satisfactorio para la descarga del río y el nivel de las aguas subterráneas. Sin embargo, este modelo mostró un pobre ajuste para la composición isotópica y la temperatura debido a la incertidumbre estructural del modelo. Se estableció un nuevo modelo que reflejaba los datos recientes de los registros de perforación profunda y que incorporaba los datos de los trazadores mostraba una precisión aceptable para los hidrogramas y los trazadores. De este modo, se representaron estimaciones más fiables del almacenamiento y la edad de las aguas subterráneas y de las trayectorias del flujo regional de agua en la cuenca. Las comparaciones entre los dos modelos indican que la estructura del modelo de una zona con un límite inferior incierto puede abordarse mediante la incorporación de múltiples datos de trazadores. Los modelos asistidos por trazadores podrían aplicarse para una comprensión holística de la dinámica del transporte de contaminantes, además de la simulación del flujo.

摘要

近年来, 综合流域模拟技术已应用于研究地表水和地下相互作用。通常通过水位曲线的最佳拟合来评估模型的性能, 仅靠水文曲线无法单独解释整个集水区的动力学。为了克服这个问题, 本研究将多个示踪剂(3H, 85Kr和地下水温度)纳入了基于物理基础的完全分布式建模框架, 以表征日本南部Kumamoto市的区域尺度的水文过程。首先, 通过水文校准模型进行的模拟能较好地模拟河流的排泄和地下水位。但是, 由于该模型的结构不确定性, 该模型显示出对同位素组成和温度的拟合性较差。建立了一个新模型, 该模型反映了最近的深孔岩心记录数据, 并结合示踪剂数据, 结果表明水位曲线和示踪剂的准确性可以接受。因此, 在该区域汇水区估算了更可靠的地下水储量, 地下水年龄和水流路径。两个模型的比较表明, 具有较低下边界的区域的模型结构可以通过合并多个示踪数据来解决。示踪剂辅助模型除了可以用于水流模拟外, 还可以用于全面了解污染物的运移机制。

Resumo

Técnicas integradas de modelagem de bacias hidrográficas têm sido aplicadas nos últimos anos para examinar as interações entre superfície e subsuperfície. O desempenho do modelo é frequentemente avaliado pelo melhor ajuste do hidrograma, que sozinho não pode explicar explicitamente toda a dinâmica da bacia. Para superar esse problema, este estudo integra diferentes traçadores (3H, 85Kr e temperatura da água subterrânea) em uma estrutura de modelagem totalmente distribuída com base física para caracterizar processos hidrológicos em escala regional em Kumamoto, sul do Japão. Em primeiro lugar, uma simulação realizada por um modelo calibrado hidrometricamente mostrou um desempenho satisfatório para a descarga do rio e nível do lençol freático. No entanto, este modelo apresentou ajuste pobre para composição isotópica e temperatura, devido à incerteza estrutural do modelo. Um novo modelo foi estabelecido refletindo dados recentes de registro de um poço profundo e incorporando dados de traçadores, mostrando uma precisão aceitável para hidrogramas e traçadores. Assim, estimativas mais confiáveis de armazenamento de água subterrânea, idade da água subterrânea e caminhos de fluxo de água foram representadas sobre a bacia hidrográfica regional. As comparações entre os dois modelos indicam que a estrutura do modelo de uma área com um limite inferior incerto pode ser abordada incorporando vários dados de traçadores. Modelos auxiliados por rastreadores podem ser aplicados para uma compreensão holística da dinâmica de transporte de contaminantes, além da simulação de fluxo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ala-aho P, Rossi PM, Isokangas E, Kløve B (2015) Fully integrated surface-subsurface flow modelling of groundwater-lake interaction in an esker aquifer: model verification with stable isotopes and airborne thermal imaging. J Hydrol 522:391–406

    Article  Google Scholar 

  • Ala-aho P, Tetzlaff D, McNamara JP, Laudon H, Soulsby C (2017) Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (spatially distributed tracer-aided rainfall–runoff) model. Hydrol Earth Syst Sci 21:5089–5110

    Article  Google Scholar 

  • Almasri MN, Kaluarachchi JJ (2007) Modeling nitrate contamination of groundwater in agricultural watersheds. J Hydrol 343:211–229

    Article  Google Scholar 

  • Ameli A, Amvrosiadi N, Grabs T, Laudon H, Creed I, McDonnell J, Bishop K (2016) Hillslope permeability architecture controls on subsurface transit time distribution and flow paths. J Hydrol 543:17–30

    Article  Google Scholar 

  • Barthel R, Banzhaf S (2016) Groundwater and surface water interaction at the regional-scale: a review with focus on regional integrated models. Water Resour Manag 30:1–32. https://doi.org/10.1007/s11269-015-1163-z

    Article  Google Scholar 

  • Basu NB, Jindal P, Schilling KE, Wolter CF, Takle ES (2012) Evaluation of analytical and numerical approaches for the estimation of groundwater travel time distribution. J Hydrol 475:65–73. https://doi.org/10.1016/j.jhydrol.2012.08.052

    Article  Google Scholar 

  • Bathurst JC (1986) Sensitivity analysis of the system Hydrologique European for an upland catchment. J Hydrol 87(1-2):103–123. https://doi.org/10.1016/0022-1694(86)90117-4

    Article  Google Scholar 

  • Berg SJ, Sudicky EA (2019) Toward large-scale integrated surface and subsurface modeling. Groundwater 57(1):1–2. https://doi.org/10.1111/gwat.12844

    Article  Google Scholar 

  • Beven K (1989) Changing ideas in hydrology-the case of physically based models. J Hydrol 105(1-2):157–172. https://doi.org/10.1016/0022-1694(89)90101-7

    Article  Google Scholar 

  • Beven K, Davies J (2015) Velocities, celerities and the basin of attraction in catchment response. Hydrol Process 29:5214–5226. https://doi.org/10.1002/hyp.10699

    Article  Google Scholar 

  • Birkel C, Soulsby C (2015) Advancing tracer-aided rainfall-runoff modelling: a review of progress, problems and unrealised potential. Hydrol Process 29:5227–5240. https://doi.org/10.1002/hyp.10594

    Article  Google Scholar 

  • Birkel C, Soulsby C (2016) Linking tracers, water age and conceptual models to identify dominant runoff processes in a sparsely monitored humid tropical catchment: linking tracers, water age and conceptual models in the humid tropics. Hydrol Process 30:4477–4493. https://doi.org/10.1002/hyp.10941

    Article  Google Scholar 

  • Birkel C, Tetzlaff D, Dunn SM, Soulsby C (2010) Towards a simple dynamic process conceptualization on in rainfall-runoff models using multi-criteria calibration and tracers in temperate, upland catchments. Hydrol Process 24(3):260–275. https://doi.org/10.1002/hyp.7478

    Article  Google Scholar 

  • Birkel C, Tetzlaff D, Dunn SM, Soulsby C (2011) Using time domain and geographic source tracers to conceptualize streamflow generation processes in lumped rainfall-runoff models. Water Resour Res 47:W02515. https://doi.org/10.1029/2010WR009547

    Article  Google Scholar 

  • Birkel C, Duvert C, Correa A, Munksgaard NC, Maher DT, Hutley LB (2020) Tracer-aided modeling in the low-relief, wet-dry tropics suggests water ages and DOC export are driven by seasonal wetlands and deep groundwater. Water Resour Res 56(4):e2019WR026175. https://doi.org/10.1029/2019WR026175

    Article  Google Scholar 

  • Boubacar AB, Moussa K, Yalo N, Berg SJ, Erler AR, Hwang HT, Khader O (2020) Sudicky EA (2020) characterization of groundwater-surface water interactions using high resolution integrated 3D hydrological model in semiarid urban watershed of Niamey, Niger. J Afr Earth Sci 162:103739. https://doi.org/10.1016/j.jafrearsci.2019.103739

    Article  Google Scholar 

  • Brunner P, Simmons CT (2012) HydroGeoSphere: a fully integrated, physically based hydrological model. Groundwater 50:170–176. https://doi.org/10.1111/j.1745-6584.2011.00882.x

    Article  Google Scholar 

  • Chen J, Sudicky EA, Davison JH, Frey SK, Park YJ, Hwang HT, Erler AR, Berg SJ, Callaghan MV, Miller K, Ross M, Peltier WR (2019) Towards a climate driven simulation of coupled surface-subsurface hydrology at the continental scale: a Canadian example. Can Water Resour J. https://doi.org/10.1080/07011784.2019.1671235

  • Cordes C, Kinzelbach W (1992) Continuous groundwater velocity fields and path lines in linear, bilinear, and trilinear finite elements. Water Resour Res 28:2903–2911. https://doi.org/10.1029/92WR01686

    Article  Google Scholar 

  • Cornaton F, Perrochet P (2006) Groundwater age, life expectancy and transit time distributions: 1. generalized reservoir theory. Adv Water Resour 29:1267–1291. https://doi.org/10.1016/j.advwatres.2005.10.009

    Article  Google Scholar 

  • Davies J, Beven KJ, Nyberg L, Rodhe A (2011) A discrete particle representation of hillslope hydrology: hypothesis testing in reproducing a tracer experiment at Gårdsjon, Sweden. Hydrol Process 25:3602–3612. https://doi.org/10.1002/hyp.8085

    Article  Google Scholar 

  • Davies J, Beven KJ, Rodhe A, Nyberg L, Bishop K (2013) Integrated modelling of flow and residence times at the catchment scale with multiple interacting pathways. Water Resour Res 49(8):4738–4750. https://doi.org/10.1002/wrcr.20377

    Article  Google Scholar 

  • Davison JH, Hwang HT, Sudicky EA, Mallia DV, Lin JC (2018) Full coupling between the atmosphere, surface, and subsurface for integrated hydrologic simulation. J Adv Model 10:43–53. https://doi.org/10.1002/2017MS001052

    Article  Google Scholar 

  • Decker M (2015) Development and evaluation of a new soil moisture and runoff parameterization for the CABLE LSM including subgrid-scale processes. J Adv Model 7(4):1788–1809. https://doi.org/10.1002/2015MS000507

    Article  Google Scholar 

  • Dehaspe J, Birkel C, Tetzlaff D, Sánchez-Murillo R, Durán-Quesada AM, Soulsby C (2018) Spatially distributed tracer-aided modelling to explore water and isotope transport, storage and mixing in a pristine, humid tropical catchment. Hydrol Process 32:3206–3224. https://doi.org/10.1002/hyp.13258

    Article  Google Scholar 

  • Delavau CJ, Stadnyk T, Holmes T (2017) Examining the impacts of precipitation isotope input (δ18O) on distributed, tracer-aided hydrological modeling. Hydrol Earth Syst Sci 21:2595–2614. https://doi.org/10.5194/hess-21-2595-2017

    Article  Google Scholar 

  • Domenico PA, Palciauskas VV (1973) Theoretical analysis of forced convective heat transfer in regional ground-water flow. Geol Soc Am Bull 84(12):3803–3814. https://doi.org/10.1130/0016-76061973)84<3803:TAOFCH>2.0.CO;2

    Article  Google Scholar 

  • Dong L (2014) Analytical study to understand groundwater flow system and surface warming effect using subsurface thermal regimes- A case study in Kumamoto area, Japan. PhD Thesis, Dept. of Earth and Environmental Science, Kumamoto University, Japan

  • Dunn SM, Birkel C, Tetzlaff D, Soulsby C (2010) Transit time distributions of a conceptual model: their characteristics and sensitivities. Hydrol Process 24:1719–1729. https://doi.org/10.1002/hyp.7560

    Article  Google Scholar 

  • Erler AR, Frey SK, Khader O, d’Orgeville M, Park YJ, Hwang HT, Lapen DR, Peltier WR, Sudicky EA (2019) Simulating climate change impacts on surface water resources within a lake-affected region using regional climate projections. Water Resour Res 55:130–155. https://doi.org/10.1029/2018WR024381

    Article  Google Scholar 

  • Fenicia F, Wrede S, Kavetski D, Pfister L, Savenije HHG, McDonnell JJ (2010) Assessing the impact of mixing assumptions on the estimation of streamwater mean residence time estimation. Hydrol Process 24(12):1730–1742. https://doi.org/10.1002/hyp.7595

    Article  Google Scholar 

  • Frei S, Lischeid G, Fleckenstein JH (2010) Effects of micro-topography on surface-subsurface exchange and runoff generation in a virtual riparian wetland: a modeling study. Adv Water Resour 33:1388–1401. https://doi.org/10.1016/j.advwatres.2010.07.006

    Article  Google Scholar 

  • Geological Survey of Japan, AIST (ed) (2009) Seamless digital geological map of Japan 1: 200,000. Research information database DB084. Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tokyo

  • Goderniaux P, Brouyvère S, Fowler HJ, Blenkinsop S, Therrien R, Orban P, Dassargues A (2009) Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves. J Hydrol 373:122–138. https://doi.org/10.1016/j.jhydrol.2009.04.017

    Article  Google Scholar 

  • Goode DJ (1996) Direct simulation of groundwater age. Water Resour Res 32(2):289–296. https://doi.org/10.1029/95WR03401

    Article  Google Scholar 

  • Hardy RJ, Bates PD, Anderson MG (1999) The importance of spatial resolution in hydraulic models for floodplain environments. J Hydrol 216(1–2):124–136. https://doi.org/10.1016/S0022-1694(99)00002-5

    Article  Google Scholar 

  • Heidbuchel I, Troch PA, Lyon SW (2013) Separating physical and meteorological controls of variable transit times in zero-order catchments. Water Resour Res 49:7644–7657. https://doi.org/10.1002/2012WR013149

    Article  Google Scholar 

  • Hosono T, Tokunaga T, Kagabu M, Nakata H, Orishikida T, Lin IT, Shimada J (2013) The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Res 47:2661–2675. https://doi.org/10.1016/j.watres.2013.02.020

    Article  Google Scholar 

  • Hosono T, Tokunaga T, Tsushima A, Shimada J (2014) Combined use of δ13C, δ15N, and δ34S tracers to study anaerobic bacterial processes in groundwater flow systems. Water Res 54:284–296. https://doi.org/10.1016/j.watres.2014.02.005

    Article  Google Scholar 

  • Hosono T, Yamada C, Shibata T, Tawara Y, Wang CY, Manga M, Rahman ATMS, Shimada J (2019) Coseismic groundwater drawdown along crustal ruptures during the 2016 mw 7.0 Kumamoto earthquake. Water Resour Res 55(7):5891–5903. https://doi.org/10.1029/2019WR024871

    Article  Google Scholar 

  • Hosono T, Hossain S, Shimada J (2020) Hydrobiogeochemical evolution along the regional groundwater flow systems in volcanic aquifers in Kumamoto, Japan. Env Earth Sci 79:410. https://doi.org/10.1007/s12665-020-09155-4

    Article  Google Scholar 

  • Hossain S, Hosono T, Ide K, Matsunaga M, Shimada J (2016a) Redox processes and occurrence of arsenic in a volcanic aquifer system of Kumamoto area, Japan. Environ Earth Sci 75(9):740. https://doi.org/10.1007/s12665-016-5557-x

    Article  Google Scholar 

  • Hossain S, Hosono T, Yang H, Shimada J (2016b) Geochemical processes controlling fluoride enrichment in groundwater at the western part of Kumamoto area, Japan. Water Air Soil Pollut 227(10):385. https://doi.org/10.1007/s11270-016-3089-3

    Article  Google Scholar 

  • Hrachowitz M, Savenije H, Bogaard TA, Tetzlaff D, Soulsby C (2013) What can flux tracking teach us about water age distribution patterns and their temporal dynamics? Hydrol Earth Syst Sci 17(2):533–564. https://doi.org/10.5194/hess-17-533-2013

    Article  Google Scholar 

  • Hwang HT, Park YJ, Sudicky EA, Berg SJ, McLaughlin R, Jones JP (2018) Understanding the water balance paradox in the Athabasca River basin, Canada. Hydrol Process. https://doi.org/10.1002/hyp,11449

  • Ichiyanagi K, Shimada J, Kagabu M, Saita S, Mori K (2012) Simulations of tritium age and δ18O distributions in groundwater by using surface-subsurface coupling full-3D distribution model (GETFLOWS) in Kumamoto, Japan. In: 39th congress of the International Association of Hydrogeologists (IAH), Sheraton on the Falls Conference Centre, Niagara Falls, ON, Canada, September 2012

  • Ide K, Hosono T, Kagabu M, Fukamizu K, Tokunaga T, Shimada J (2020) Changes of groundwater flow systems after the 2016 mw 7.0 Kumamoto earthquake deduced by stable isotopic and CFC-12 compositions of natural springs. J Hydrol 583:124551. https://doi.org/10.1016/j.jhydrol.2020.124551

    Article  Google Scholar 

  • Itoh K, Tosaka H, Nakajima K, Nakagawa M (2000) Application of surface-subsurface flow coupled with numerical simulator to runoff analysis in an actual field. Hydrol Process 14:417–430. https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<417::AID-HYP946>3.0.CO;2-O

    Article  Google Scholar 

  • Ivanov VY, Vivoni ER, Bras RL, Entekhabi D (2004) Preserving high-resolution surface and rainfall data in operational scale basin hydrology: a fully-distributed physically-based approach. J Hydrol 298(1–4):80–111. https://doi.org/10.1016/j.jhydrol.2004.03.041

    Article  Google Scholar 

  • Japan Meteorological Agency (2020) https://www.jma.go.jp/jma/indexe.html. Accessed April 2020

  • Jing M, Heße F, Kumar R, Kolditz O, Attinger S (2018) Influence of input and parameter uncertainty on the prediction of catchment-scale groundwater travel time distributions. Hydrol Earth Syst Sci 23(1). https://doi.org/10.5194/hess-2018-383

  • Kagabu M, Matsunaga M, Ide K, Momoshima N, Shimada J (2017) Groundwater age determination using 85Kr and multiple age tracers SF6, CFCs and 3H to elucidate regional groundwater flow systems. J Hydrol Reg Stud 12:165–180. https://doi.org/10.1016/j.ejrh.2017.05.003

    Article  Google Scholar 

  • Kim M, Pangle LA, Cardoso C, Lora M, Volkmann TH, Wang Y, Harman CJ, Troch PA (2016) Transit time distributions and storage selection functions in a sloping soil lysimeter with time-varying flow paths: direct observation of internal and external transport variability. Water Resour Res 52:7105–7129. https://doi.org/10.1002/2016WR018620

    Article  Google Scholar 

  • Kiriyama T, Ichikawa T (2004) Preservation of ground water basin recharging by paddy field. Ann J Hydraul Eng 48:373–378. https://doi.org/10.2208/prohe.48.373

    Article  Google Scholar 

  • Kitamura A, Kurikami H, Sakuma K, Malins A, Okumura M, Machida M, Mori K, Tada K, Tawara Y, Kobayashi T, Yoshida T, Tosaka H (2016) Redistribution and export of contaminated sediment within eastern Fukushima Prefecture due to typhoon flooding. Earth Surf Process Landf 41:1708–1726. https://doi.org/10.1002/esp.3944

    Article  Google Scholar 

  • Knighton J, Saia SM, Morris CK, Archiblad JA, Walter MT (2017) Ecohydrologic considerations for modeling of stable water isotopes in a small intermittent watershed. Hydrol Process 31:2438–2452. https://doi.org/10.1002/hyp.11194

    Article  Google Scholar 

  • Kollet SJ, Maxwell RM (2006) Integrated surface–groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29:945–958. https://doi.org/10.1016/j.advwatres.2005.08.006

    Article  Google Scholar 

  • Kollet SJ, Maxwell RM (2008) Demonstrating fractal scaling of baseflow residence time distributions using a fully-coupled groundwater and land surface model. Geophys Res Lett 35(7):L07402. https://doi.org/10.1029/2008GL033215

    Article  Google Scholar 

  • Kumamoto Prefecture and Kumamoto City (1986) General groundwater survey report of Kumamoto area (in Japanese). Kumamoto Prefecture and Kumamoto City, Japan, 90 pp

  • Kumamoto prefecture and Kumamoto city (1995) The Investigation Report on the Groundwater Protection and Management in Kumamoto Area, Kumamoto, Japan (in Japanese), Kumamoto prefecture and Kumamoto City, Japan, 122 pp

  • Kuppel S, Tetzlaff D, Maneta MP, Soulsby C (2018) EcH2O-iso 1.0: water isotopes and age tracking in a process-based, distributed ecohydrological model. Geosci Model Dev 11:3045–3069. https://doi.org/10.5194/gmd-11-3045-2018

    Article  Google Scholar 

  • Li Q, Unger AJA, Sudicky EA, Kassenaar D, Wexler EJ, Shikaze S (2008) Simulating the multi-seasonal response of a large-scale watershed with a 3D physically-based hydrologic model. J Hydrol 357:317–336. https://doi.org/10.1016/j.jhydrol.2008.05.024

    Article  Google Scholar 

  • Maples SR, Fogg GE (2019) Maxwell RM (2019) modeling managed aquifer recharge processes in a highly heterogeneous, semi-confined aquifer system. Hydrogeol J 27(8):2869–2888. https://doi.org/10.1007/s10040-019-02033-9

    Article  Google Scholar 

  • Matiatos I, Varouchakis EA, Papadopoulou MP (2019) Performance evaluation of multiple groundwater flow and nitrate mass transport numerical models. Environ Model Assess 24:659–675. https://doi.org/10.1007/s10666-019-9653-7

    Article  Google Scholar 

  • Maxwell RM, Condon LE, Kollet SJ, Maher K, Haggerty R, Forrester MM (2016) The imprint of climate and geology on the residence times of groundwater. Geophys Res Lett 43:701–708. https://doi.org/10.1002/2015GL066916

    Article  Google Scholar 

  • McCallum JL, Cook PG, Simmons CT (2015) Limitations of the use of environmental tracers to infer groundwater age. Groundwater 53:56–70. https://doi.org/10.1111/gwat.12237

    Article  Google Scholar 

  • McDonnell JJ, Beven K (2014) Debates on water resources: the future of hydrological sciences: a common path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resour Res 50:5342–5350. https://doi.org/10.1002/2013WR015141

    Article  Google Scholar 

  • McGuire KJ, McDonnell JJ (2015) Preface: tracers advances in catchment hydrology. Hydrol Process 29:5135–5138. https://doi.org/10.1002/hyp.10740

    Article  Google Scholar 

  • Miles OW, Novakowski KS (2016) Large water-table response to rainfall in a shallow bedrock aquifer having minimal overburden cover. J Hydrol 541:1316–1328. https://doi.org/10.1016/j.jhydrol.2016.08.034

    Article  Google Scholar 

  • Miyakoshi A, Taniguchi M, Ide K, Kagabu M, Hosono T, Shimada J (2020) Identification of changes in subsurface temperature and groundwater flow after the 2016 Kumamoto earthquake using long-term well temperature–depth profiles. J Hydrol 582:124530. https://doi.org/10.1016/j.jhydrol.2019.124530

    Article  Google Scholar 

  • Miyamoto N, Shibasaki T, Takahashi H, Hatakeyama A, Yamamoto S (1962) Geology and groundwater of the western foot of Aso volcano- a study of confined groundwater of Japan. J Geol Soc Japan 68:282–292

    Article  Google Scholar 

  • Miyoshi M, Furukawa K, Shinmura T, Shimono M, Hasenaka T (2009) Petrography and whole-rock geochemistry of Pre-Aso lavas from the caldera wall of Aso volcano, central Kyushu. J Geol Soc Japan 115:672–687

    Article  Google Scholar 

  • MLIT (2020) Water information system. Ministry of Land, Infrastructure, Transport and Tourism of Japan. http://www1.river.go.jp/. Accessed April 2020

  • Momoshima N, Inoue F, Ohta T, Mahara Y, Shimada J, Ikawa R, Kagabu M, Ono M, Yamaguchi K, Sugihara S, Taniguchi M (2011) Application of 85Kr dating to groundwater in volcanic aquifer of Kumamoto area, Japan. J Radioanal Nucl Chem 287:761–767. https://doi.org/10.1007/s10967-010-0821-0

    Article  Google Scholar 

  • Mori K, Tada K, Tawara Y, Ohno K, Asami M, Kosaka K, Tosaka H (2015) Integrated watershed modeling for simulation of spatio-temporal redistribution of post-fallout radionuclides: application in radiocesium fate and transport processes derived from the Fukushima accident. Environ Model Softw 72:126–146. https://doi.org/10.1016/j.envsoft.2015.06.012

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900. https://doi.org/10.13031/2013.23153

    Article  Google Scholar 

  • Munz M, Oswald SE, Schmidt C (2017) Coupled long-term simulation of reach-scale water and heat fluxes across the river–groundwater interface for retrieving hyporheic residence times and temperature dynamics. Water Resour Res 53:8900–8924. https://doi.org/10.1002/2017WR020667

    Article  Google Scholar 

  • Nakayama H, Furusawa W, Hase Y, Aramaki S (2019) Geological cross-section maps in Kumamoto area –subsurface geology and the Kumamoto earthquake–. Research Association for Subsurface Geology of Kumamoto, Kumanichi Publisher, Kumamoto, pp 114 (in Japanese)

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I: a discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6

  • Okumura A, Hosono T, Boateng D, Shimada J (2018) Evaluations of the downward velocity of soil water movement in the unsaturated zone in a groundwater recharge area using δ18O tracer: the Kumamoto region, southern Japan. Geol Croat 71(2):65–82. https://doi.org/10.4154/gc.2018.09

    Article  Google Scholar 

  • Ono, K, Watanabe K (1985) Geological map of Aso volcano (1:50,000). In: Geological map of volcanoes 4 (in Japanese with English abstract). Geological Survey of Japan, Tokyo

  • Oshima I (2010) Administration for groundwater management in the Kumamoto area. J Groundw Hydrol 52:49–64

    Article  Google Scholar 

  • Peaceman DW (1983) Interpretation of well-block pressure in numerical reservoir simulation with non-square grid blocks and anisotropic permeability. Soc Pet Eng J:531–543. https://doi.org/10.2118/10528-PA

  • Piovano TI, Tetzlaff D, Carey SK, Shatilla NJ, Smith A, Soulsby C (2019) Spatially distributed tracer-aided runoff modelling and dynamics of storage and water ages in a permafrost-influenced catchment. Hydrol Earth Syst Sci 23:2507–2523. https://doi.org/10.5194/hess-23-2507-2019

    Article  Google Scholar 

  • Pruess K, Oldenburg C, Moridis G (1999) TOUGH2 user’s guide, version 2.0. Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, CA

  • Rahman ATMS, Hosono T, Kisi O, Boateng D, Imon AHM (2020a) A minimalistic approach for evapotranspiration estimation using prophet model. Hydrol Sci J. https://doi.org/10.1080/02626667.2020.1787416

  • Rahman ATMS, Hosono T, Quilty JM, Das J, Basak A (2020b) Multiscale groundwater level forecasting: coupling new machine learning approaches with wavelet transforms. Adv Water Resour 141:103595. https://doi.org/10.1016/j.advwatres.2020.103595

    Article  Google Scholar 

  • Rassam DW, Peeters L, Pickett T, Jolly I, Holz L (2013) Accounting for surface-groundwater interactions and their uncertainty in river and groundwater models: a case study in the Namoi River, Australia. Environ Model Softw 50:108–119. https://doi.org/10.1016/j.envsoft.2013.09.004

    Article  Google Scholar 

  • Sakuma K, Kitamura A, Malins A, Kurikami H, Machida M, Mori K, Tada K, Kobayashi T, Tawara Y, Tosaka H (2017) Characteristics of radio-cesium transport and discharge between different basins near to the Fukushima Dai-ichi nuclear power plant after heavy rainfall events. J Environ Radioact 169–170:130–150. https://doi.org/10.1016/j.jenvrad.2016.12.006

    Article  Google Scholar 

  • Sakuma K, Malins A, Funaki H, Kurikami H, Niizato T, Nakanishi T, Mori K, Tada K, Kobayashi T, Kitamura A, Hosomi M (2018) Evaluation of sediment and 137Cs redistribution in the Oginosawa River catchment near the Fukushima Dai-ichi nuclear power plant using integrated watershed modeling. J Environ Radioact 182:44–51. https://doi.org/10.1016/j.jenvrad.2017.11.021

    Article  Google Scholar 

  • Samaniego L, Kumar R, Attinger S (2010) Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour Res 46:W05523. https://doi.org/10.1029/2008WR007327

    Article  Google Scholar 

  • Scheliga B, Tetzlaff D, Nuetzmann G, Soulsby C (2019) Assessing runoff generation in riparian wetlands: monitoring groundwater–surface water dynamics at the micro-catchment scale. Environ Monit Assess 191(2). https://doi.org/10.1007/s10661-019-7237-2

  • Schilling OS, Cook PG, Brunner P (2019) Beyond classical observations in hydrogeology: the advantages of including exchange flux, temperature, tracer concentration, residence time, and soil moisture observations in groundwater model calibration. Rev Geophys 57:146–182. https://doi.org/10.1029/2018RG000619

    Article  Google Scholar 

  • Shen C, Phanikumar MS (2010) A process-based, distributed hydrologic model based on a large-scale method for surface–subsurface coupling. Adv Water Resour 33:1524–1541. https://doi.org/10.1016/j.advwatres.2010.09.002

    Article  Google Scholar 

  • Shimada J (2012) Sustainable management of groundwater resources for 700,000-plus residents: a practical example of the transboundary management of groundwater resources in the Kumamoto area, Japan. In: Taniguchi M, Shiraiwa T (eds) The dilemma of boundaries: toward a new concept of catchment. Springer, Japan, pp 235–246. https://doi.org/10.1007/978-4-431-54035-9_20

  • Shimada J, Ichiyanagi K, Kagabu M, Saita S, Mori K (2012) Evaluation of long-term artificial groundwater recharge through leaky rice paddies with a 500 year history. In: 39th congress of the International Association of Hydrogeologists (IAH), Sheraton on the Falls Conference Centre, Niagara Falls, ON, Canada, September 2012

  • Shimano Y, Taniguchi M, Kayane I (1992) Characteristics of groundwater temperature in the upland areas at the western foot of Aso volcanoes. JAHS 19:155–169

    Google Scholar 

  • Smith MB, Seo J, Koren VI, Reed SM, Zhang Z, Duan Q, Moreda F, Cong S (2004) The distributed model intercomparison project (DMIP): motivation and experiment design. J Hydrol 298:4–26. https://doi.org/10.1016/j.jhydrol.2004.03.040

    Article  Google Scholar 

  • Smith A, Welch C, Stadnyk T (2016) Assessment of a lumped coupled flow-isotope model in data scarce boreal catchments. Hydrol Process 30:3871–3884

    Article  Google Scholar 

  • Spanoudaki K, Stamou AI, Nanou-Giannarou A (2009) Development and verification of a 3-D integrated surface water-groundwater model. J Hydrol 375:410–427. https://doi.org/10.1016/j.jhydrol.2009.06.041

    Article  Google Scholar 

  • Stolp BJ, Solomon DK, Suckow A, Vitvar T, Rank D, Aggarwal PK, Han LF (2010) Age dating base flow at springs and gaining streams using helium-3 and tritium: Fischa-Dagnitz system, southern Vienna Basin, Austria. Water Resour Res 46(7):W07503. https://doi.org/10.1029/2009WR008006

    Article  Google Scholar 

  • Sudicky EA (2013) A physically-based modelling approach to assess the impact of climate change on Canadian surface and groundwater resources. In: 3rd International HydroGeoSphere User Conference 2013, Neuchatel, Switzerland, April 2013

  • Sutanudjaja EH, van Beek LPH, de Jong SM, van Gee FC, Bierkens MFP (2011) Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin. Hydrol Earth Syst Sci 15:2913–2935

    Article  Google Scholar 

  • Takemori Y, Ichikawa T (2007) On effect of groundwater evaluation by keeping water in no use paddy field in the middle Shira-River area. Bull Sch Eng Kyushu Tokai Univ 34:1–8

    Google Scholar 

  • Taniguchi M, Shimada J, Uemura T (2003) Transient effects of surface temperature and groundwater flow on subsurface temperature in Kumamoto plain, Japan. Phys Chem Earth 28:477–486. https://doi.org/10.1016/S1474-7065(03)00067-6

    Article  Google Scholar 

  • Taniguchi M, Burnett K, Shimada J, Hosono T, Wada CA, Ide K (2019) Recovery of lost nexus synergy via payment for environmental services in Kumamoto, Japan. Front Environ Sci 7:1–8. https://doi.org/10.3389/fenvs.2019.00028

    Article  Google Scholar 

  • Tawara Y, Hosono T, Fukuoka Y, Yoshida T, Shimada J (2020) Quantitative assessment of the changes in regional water flow systems caused by the 2016 Kumamoto earthquake using numerical modeling. J Hydrol 583:124559. https://doi.org/10.1016/j.jhydrol.2020.124559

    Article  Google Scholar 

  • Therrien R, McLaren RG, Sudicky EA, Panday SM (2010) HydroGeoSphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulations Group, DRAFT-2010, Canada. https://www.ggl.ulaval.ca/fileadmin/ggl/documents/rtherrien/hydrogeosphere.pdf

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94. https://doi.org/10.2307/210739

    Article  Google Scholar 

  • Thunvik R (1987) Calculations on HYDROCOIN level 2, case 1 using the GWHRT flow model (no. SKB-TR-87-04). Swedish Nuclear Fuel and Waste Management, Stockholm

  • Tosaka H (2007) Mathematics of hydrological cycle in Geosphere. University Tokyo Press, pp 342

  • Tosaka H, Kojima K, Miki A, Chino T (1996) Numerical simulation of surface-subsurface-coupled, 2-phase, 3-dimensional fluid behavior. J Japan Assoc Groundwater Hydrol 38:253–267

    Article  Google Scholar 

  • Tosaka H, Itoh K, Furuno T (2000) Fully coupled formulation of surface flow with 2-phase subsurface flow for hydrological simulation. Hydrol Process 14(3):449–464

    Article  Google Scholar 

  • Tosaka H, Mori K, Tada K, Tawara Y, Yamashita K (2010) A general-purpose terrestrial fluids/heat flow simulator for watershed system management. In: Proceedings of IAHR International Groundwater Symposium 2010, Valencia, Spain, September 2010

  • Tsuboyama Y, Sidle RC, Noguchi S, Hosoda I (1994) Flow and solute transport through the soil matrix and macropores of a hillslope segment. Water Resour Res 30(4):879–890. https://doi.org/10.1029/93WR03245

    Article  Google Scholar 

  • Van Huijgevoort MHJ, Tetzlaff D, Sutanudjaja EH, Soulsby C (2016a) Using high resolution tracer data to constrain water storage, flux and age estimates in a spatially distributed rainfall-runoff model. Hydrol Process 30(25):4761–4778

    Article  Google Scholar 

  • Van Huijgevoort M, Tetzlaff D, Sutanudjaja EH, Soulsby C (2016b) Visualisation of spatial patterns of connectivity and runoff ages derived from a tracer-aided model. Hydrol Process 25:4893–4895

    Article  Google Scholar 

  • VanderKwaak, JE (1999) Numerical simulation of flow and chemical transport in integrated surface–subsurface hydrologic system. PhD Thesis, University of Waterloo, Waterloo, ON, Canada

  • VanderKwaak JE, Loague K (2001) Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resour Res 37:999–1013. https://doi.org/10.1029/2000WR900272

    Article  Google Scholar 

  • Varni M, Carrera J (1998) Simulation of groundwater age distributions. Water Resour Res 34:3271–3281. https://doi.org/10.1029/98WR02536

    Article  Google Scholar 

  • Water Resources Development Study Group (1975) Groundwater survey report of Kumamoto area. Department of Geography, Education, Tokyo University, Tokyo

  • Weill S, Altissimo M, Cassiani G, Deiana R, Marani M, Putti M (2013) Saturated area dynamics and streamflow generation from coupled surface–subsurface simulations and field observations. Adv Water Resour 59:196–208. https://doi.org/10.1016/j.advwatres.2013.06.007

    Article  Google Scholar 

  • Weissmann GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38(10):1198. https://doi.org/10.1029/2001WR000907

    Article  Google Scholar 

  • Wilusz DC, Harman CJ, Ball WB, Maxwell RM, Buda AR (2020) Using particle tracking to understand flow paths, age distributions, and the paradoxical origins of the inverse storage effect in an experimental catchment. Water Resour Res. https://doi.org/10.1029/2019WR025140

  • Yamaguchi K (2010) Evaluation of groundwater residence time of Kumamoto area by using environmental tritium. BA Thesis, Department of Earth and Environmental Science, Kumamoto University, Japan

  • Zeng X, Hosono T, Ohta H, Niidome T, Shimada J, Morimura S (2016) Comparison of microbial communities inside and outside of a denitrification hotspot in confined groundwater. Int Biodeterior Biodegrad 114:104–109. https://doi.org/10.1016/j.ibiod.2016.05.019

    Article  Google Scholar 

  • Zhang H, Li Z, Saifullah M, Li Q, Li X (2016) Impact of DEM resolution and spatial scale: analysis of influence factors and parameters on physically based distributed model. Adv Meteorol. https://doi.org/10.1155/2016/8582041

  • Zhang Y, Weissmann G, Fogg G, Lu B, Sun H, Zheng C (2018) Assessment of groundwater susceptibility to non-point source contaminants using three-dimensional transient indexes. Int J Environ Res Public Health 15(6):1177. https://doi.org/10.3390/ijerph15061177

    Article  Google Scholar 

Download references

Acknowledgments

A.T.M.S.R. wishes to thank members of hydrology laboratory in Kumamoto University and staffs in Geosphere Environmental Technology Corporation for their permanent supports and fruitful discussion during the study.

Funding

A.T.M.S.R. was supported by MEXT scholarship, Japan. T.H. was supported by the JSPS Grant-in-Aid for Scientific Research B (17H01861).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. M. Sakiur Rahman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 6237 kb)

Appendices

Appendix 1: governing equations of GETFLOWS

The governing equations of GETFLOWS simulator include fluid flow, transport of dissolved materials (e.g., concentrations and isotope ratios), and heat. Fluid flow is modeled as coupled surface and subsurface flows, and the associated conjunctive behavior of the dissolved materials and heat can be traced simultaneously. The individual governing equations are based on the mass and energy conservation laws. Table 1 summarizes the major parameters shown in the governing equations.

Table 1 The parameters used in the governing equations for operation of the GETFLOWS

Coupled surface and subsurface fluid flows

The governing equations are derived from the mass conservation laws for each fluid phase (surface and subsurface). Manning’s law was adapted for surface water flow, and diffusive wave approximation of Saint Venant equations was applied to estimate the surface water velocity in 2D space. Subsurface fluid flows (i.e., groundwater) are characterized by generalized Darcy’s law in 3D space. The law of mass conservation for both surface and subsurface fluid flows can be expressed as follows:

$$ -\nabla \bullet {M}_p+{\rho}_p{q}_p=\frac{\partial \left(\phi {\rho}_p{S}_p\right)}{\partial t},\left(p=\mathrm{water},\mathrm{air}\right) $$
(2)

where, ∇ and ρp denote differential operator and density (kg/m3) of fluid, respectively. Mass flux of fluid (kg/m2/s) and volumetric flux of source and sink (m3/m3/s) are represented by Mp and ϕ, and qp and t represent effective porosity (m3/m3) and time (s), respectively. The saturation of fluid (m3/m3) is embodied by Sp, and the subscript p is used to denote the air (a) or water (w) phase of the fluid. The effective porosity value is 1.0 in Eq. (1) for the surface fluid.

Fluid mass flux (Mp) per unit area can be given by adapting Manning’s law for surface flow and Darcy’s law for subsurface as follows:

Surface fluid:

  • Water

$$ {M}_p=-\frac{\rho_p{R}^{\frac{2}{3}}}{n_l}\sqrt{\left|\frac{\partial h}{\partial l}+\frac{\partial z}{\partial l}\right|}\operatorname{sgn}\left(\frac{\partial h}{\partial l}+\frac{\partial z}{\partial l}\right),\left(p=\mathrm{water}\ l=x,y\right) $$
(3)
  • Air

$$ {M}_p=-\frac{\rho_pK{k}_{r,p}}{\mu_p}\nabla \left({P}_p+{\rho}_p gz\right),\left(p=\mathrm{air}\right) $$
(4)

Subsurface fluid:

$$ {M}_p=-\frac{\rho_pK{k}_{r,p}}{\mu_p}\nabla \left({P}_p+{\rho}_p gz\right),\left(p=\mathrm{water},\mathrm{air}\right) $$
(5)

where, nl indicates Manning’s roughness coefficient (m-1/3 s). The R, h and l represent hydraulic radius (m), surface water depth (m), and surface water flow distance (m), respectively. The z, g, μp and Pp denote elevation from datum surface (m), gravitational acceleration (m/s2), viscosity coefficient (Pa s), and pressure (Pa), respectively. K and kr, p are intrinsic permeability (m2) and relative permeability, respectively.

The surface-water depth h was computed from the water saturation and the height of the grid block in the surface environment. The difference between air and water pressure is associated with capillary pressure Pc (Pa):

$$ {P}_{\mathrm{a}}={P}_{\mathrm{w}}+{P}_{\mathrm{c}} $$
(6)

The relative permeability and capillary pressure are a function of the water saturation in the two-phase flow system. Additionally, the fluid density and viscosity coefficient are a function of fluid pressure and temperature. The total of fluid saturations is treated as 1.0 in the two-phase flow system as follows:

$$ {S}_{\mathrm{w}}+{S}_{\mathrm{a}}=1.0 $$
(7)

Transport of dissolved materials in water

This study coupled the water flow with mass transport of groundwater age tracers (3H and 85Kr) as dissolved materials in water. The mass balance of dissolved material i in water can be expressed as the following advection-diffusion/dispersion equation considering radioactive decay as:

$$ -\nabla \bullet \left({M}_{\mathrm{w}}{C}_{\mathrm{w},i}\right)+\nabla \bullet {D}_{\mathrm{w},i}\nabla \left({\rho}_{\mathrm{w}}{C}_{\mathrm{w},i}\right)+{\rho}_{\mathrm{w}}{q}_{\mathrm{w}}{C}_{\mathrm{w},i}-\phi {\lambda}_i{C}_{\mathrm{w},i}=\frac{\partial \left(\phi {\rho}_{\mathrm{w}}{S}_{\mathrm{w}}{C}_{\mathrm{w},i}\right)}{\partial t} $$
(8)

where, Cw, i is the mass fraction of dissolved material i in water (kg/kg) (defined as the mass of dissolved material i per unit mass of water in each grid). Dw, i and λi are the hydrodynamic dispersion coefficient (m2/s) and the decay constant (1/s) of dissolved material i, respectively. The hydrodynamic dispersion coefficient Dw, i is computed from the molecular diffusion coefficient, tortuosity factor, dispersion length, and effective water velocity in porous media. The λiis derived from the half-life of each radioactive material (3H and 85Kr). Adsorption and desorption are not considered for these isotopes. The molecular diffusion coefficient is considered as a constant value in this study.

Heat transport

The governing equation for heat transport modeling consists of energy conservation equations for fluid and solid phases in addition to mass balance equations for air and water phases under nonisothermal conditions. The equation can be expressed as:

$$ -\nabla \bullet \left({M}_{\mathrm{w}}{H}_{\mathrm{w}}\right)-\nabla \bullet \left({M}_a{H}_{\mathrm{a}}\right)+\nabla \bullet {\kappa}_{\mathrm{f}}\nabla T+\nabla \bullet {\kappa}_{\mathrm{s}}\nabla T+{\rho}_{\mathrm{w}}{q}_{\mathrm{w}}{H}_w+{\rho}_a{q}_a{H}_a+{E}_{\mathrm{s}}=\frac{\partial \left(\phi {\rho}_{\mathrm{w}}{S}_{\mathrm{w}}{U}_{\mathrm{w}}+\phi {\rho}_{\mathrm{a}}{S}_{\mathrm{a}}{U}_a+\left(1-\phi \right){\rho}_{\mathrm{s}}{U}_{\mathrm{s}}\right)}{\partial t} $$
(9)

where, Hw and Haare the enthalpies of water and air phases (J/kg), respectively, κf and κs are the saturation weighted average thermal conductivities of fluid and solid phases (W/m/K), respectively, T is the average temperature for both fluid and solid phases (K), Es is the volumetric heat flux of the sink and source in the solid phase (J/m3/s), ρs is the density of solid phase (kg/m3), and Uw, Ua and UR are the internal energies of water, air, and solid phases (J/kg), respectively. The heat transport parameters such as heat capacity and thermal conductivity are treated as fixed values in this simulation.

Appendix 2: verification and validation

In the early stage of the development of the GETFLOWS simulator, Tosaka et al. (2000) verified surface flow simulation by comparing with experimental results, and its application was proved in some local fields (Itoh et al. 2000). Studies (Tosaka et al. 1996, 2000) also compared results of some analytical solutions for surface–subsurface flow coupling simulation, e.g., relative permeability and capillary rise of water, using GETFLOWS (Tosaka et al. 1996, 2000). More recently, Mori et al. (2015) have shown inter-comparisons with another simulator (i.e., InHM, VanderKwaak 1999) for surface flow and sediment discharges. The detailed verification and validation (V & V) of GETFLOWS are available through the website of the Geosphere Environmental Technology Corp. (2020) or direct email. However, some basic information on V & V procedures and model discretization are provided also in this paper’s Appendices and ESM, since these manuals are not completely accessible through their website.

In the development of the GETFLOWS systems, a lot of verification was undertaken for relevant cases, mainly for the subsurface domain, by comparing results of analytical solutions, inter-comparisons with other simulators, and using results of experimental study. Detailed descriptions of the analytical solutions are provided in Sections S3–S8 of the ESM. Briefly, an analytical solution for the conceptual model is shown in Fig. S14 of the ESM and numerical simulation for 1D saturated horizontal groundwater flows (Fig. S15 of the ESM) and 2D vertical flows (Fig. S16 of the ESM) are described in Section S3 of the ESM. Details of the numerical model and analytical solutions are provided in Tables S7–S10 of the ESM, and their results are presented in Tables S11 and S12 of the ESM. Similarly, the simulator was also verified using experimental results of a falling head test to monitor water level changes over a given time (Tosaka 2007; Section S4, Figs. S17–S19 and Tables S13–S15 of the ESM). Furthermore, verifications for the pumping test of a confined aquifer (Figs. S20–S22, Tables S16–S18 of the ESM) and capillary pressure of unsaturated zone (Figs. S23 and S24, Tables S19–S21 of the ESM) were provided in sections S5 and S6. These comparisons showed excellent agreement between analytical and numerical solutions and ensured that there is no bug in the GETFLOWS numerical code for water flow simulation.

Comparison of simulation results between GETFLOWS and TOUGH2 (Pruess et al. 1999), another multiphase flow simulator, is documented in Section S7 of the ESM, for simulating groundwater flows in porous media with heterogenous permeability (Fig. S25 of the ESM). This inter-comparison example was taken from the international HYDROCOIN project for groundwater flow simulation evaluation (Thunvik 1987). A 2D heterogeneous porous medium placed between impermeable layers was considered for the simulation (Fig. S26 of the ESM). Initially, the system was kept in an unsaturated condition; then, water was injected to allow fluids flow through the media replacing the air (Fig. S26 of the ESM). Further details on model domains and properties are given in Tables S22–S24 of the ESM. Comparisons of transient simulation results between GETFLOWS and TOUGH2 (Fig. S27, Fig. S28 of the ESM) showed almost identical results over the time steps. Overall, the GETFLOWS simulations showed an excellent agreement with TOUGH2 for transient simulation (Fig. S27, Fig. S28 and Table S25 of the ESM).

Several previous studies have already demonstrated the capability of GETFLOWS for simultaneous simulations of water flows, isotope tracers and sediment transport (e.g., Mori et al. 2015; Kitamura et al. 2016; Sakuma et al. 2017, 2018; Hosono et al. 2019; Tawara et al. 2020). However, number of studies simulating for heat transport processes along with groundwater flow systems are still small on certain field sites using GETFLOWS. In principal, performance of GETFLOWS simulation is verified with the theoretical solutions (Domenico and Palciauskas 1973) for simultaneous transport of groundwater and heat. All the model parameters (Table S26) relevant to the Domenico and Palciauskas 1973) problem (Fig. S28 of the ESM) and numerical simulation details are provided in Section S8 of the ESM. All numerical simulation results extracted both for vertical and horizontal plains, and the comparisons between analytical and numerical solutions, showed identical results (Fig. S30 of the ESM). Hence, GETFLOWS is capable of simulating heat transport processes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A.T.M.S., Hosono, T., Tawara, Y. et al. Multiple-tracers-aided surface-subsurface hydrological modeling for detailed characterization of regional catchment water dynamics in Kumamoto area, southern Japan. Hydrogeol J 29, 1885–1904 (2021). https://doi.org/10.1007/s10040-021-02354-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02354-8

Keywords

Navigation