Skip to main content

Advertisement

Log in

Late Cretaceous to Miocene Paleoclimatic changes in the Indian Ocean: insights from the deepwater Mannar Basin, Sri Lanka

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The geology of Sri Lanka captures one of the longest and most complete records of Jurassic to Miocene tectonic evolutions from the mid-latitudes of the southern hemisphere to the equatorial northern hemisphere. Sedimentary basins in Sri Lanka provide a natural laboratory with which to reconstruct paleoclimate during the island’s northward voyage from Gondwana to Asia. Here, drill core cuttings were obtained from the Barracuda hydrocarbon exploration well in the offshore Mannar Basin, Sri Lanka. CHNS elemental analysis, gas chromatography-mass spectrometry, and stable C and N isotopic analyses were performed. The results suggest the deposition of organic carbon depleted (average total organic carbon (TOC) = 0.97%) sediments under the arid climate of the Early Campanian. Separation of the Laxmi Ridge-Seychelles and Seychelles from the Indian plate and sea-level regression may have enhanced the deposition of organic carbon–rich (average TOC = 1.34%) and terrestrial organic matter (OM)–rich (average C/N ratio = 20.36) sediments during the Late Campanian to Late Maastrichtian. CaCO3-rich (average = 32.5%) Upper Cretaceous sediments then show a period of high productivity under a warm climate. The Deccan-Reunion basalt likely acted as a major contributor to the mass extinction of coccolithophores/foraminifera at the Late Maastrichtian followed by a reduction of CaCO3 and organic carbon content. The Early-Late Paleocene was characterized by the deposition of algal-derived OM with a terrestrial contribution (average C/N ratio = 15.75) under oxic depositional conditions (average C/S ratio = 16.21). However, the depositional environment changed drastically to one of oxygen-poor marine conditions (average C/S ratio = 6.83) during the Late Paleocene to the Early Oligocene due to weak oceanic circulation under a greenhouse climate. In contrast, the deposition of CaCO3-rich sediments since the Late Paleocene (average = 40.2%) is linked to the movement of the Indian plate into northern, warmer tropical latitudes. The Middle Oligocene to Miocene sedimentary succession was characterized by terrestrial OM-rich (average TOC = 2.51% and C/N = 23.45) sediments. The Middle-Upper Miocene sedimentary succession contains lamination and back carbon (charcoal fragments) suggesting the development of the present-day South Asian monsoon system. This record from Sri Lanka provides important new insights into Jurassic-Miocene geological and climatic evolution in this tropical part of the world for the first time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramovich S, Keller G, Adatte T, Stinnesbeck W, Hottinger L, Stueben D, Berner Z, Ramanivosoa B, Randriamanantenasoa A (2002) Age and paleoenvironment of the Maastrichtian-Paleocene of the Mahajanga Basin, Madagascar: a multidisciplinary approach. Mar Micropaleontol 47:17–70

    Article  Google Scholar 

  • Adatte T, Keller G, Stinnesbeck W (2002) Late Cretaceous to early Paleocene climate and sea-level fluctuations: the Tunisian record. Palaeogeogr Palaeoclimatol Palaeoecol 178:165–196

    Article  Google Scholar 

  • Ali JR, Aitchison JC (2008) Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth Sci Rev 88:145–166

    Article  Google Scholar 

  • Arthur MA, Dean WE, Schlanger SO (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. Geophys Monogr Ser 32:504–529

    Google Scholar 

  • Bains S, Corfield RM, Norris RD (1999) Mechanisms of climate weathering at the end of the Paleocene. Science 285:724–727

    Article  Google Scholar 

  • Bandara AS, Weerasinghe DA, Ratnayake AS (2020) Determination of the regional and residual gravity anomalies to reconstruct basin structures of the Cauvery Basin. J Geol Soc Sri Lanka 21:21–31

    Article  Google Scholar 

  • Bender MM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244

    Article  Google Scholar 

  • Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am J Sci 282:451–473

    Article  Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48:605–615

    Article  Google Scholar 

  • Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–883

    Article  Google Scholar 

  • Bingham EM, McClymont EL, Väliranta M, Mauquoy D, Roberts Z, Chambers FM, Pancost RD, Evershed RP (2010) Conservative composition of n-alkane biomarkers in Sphagnum species: implications for palaeoclimate reconstruction in ombrotrophic peat bogs. Org Geochem 41:214–220

    Article  Google Scholar 

  • Bose S, Das A, Samantaray S, Banerjee S, Gupta S (2020) Late tectonic reorientation of lineaments and fabrics in the northern Eastern Ghats Province, India: evaluating the role of the Mahanadi Shear Zone. J Asian Earth Sci 201:104071

    Article  Google Scholar 

  • Boss SK, Wilkinson BH (1991) Planktogenic/eustatic control on cratonic/oceanic carbonate accumulation. J Geol 99:497–513

    Article  Google Scholar 

  • Caldeira K, Rampino MR (1993) Aftermath of the end-Cretaceous mass extinction: possible biogeochemical stabilization of the carbon cycle and climate. Paleoceanography 8:515–525

    Article  Google Scholar 

  • Calvès G, Schwab AM, Huuse M, Clift PD, Giana C, Jolley D, Tabrez AR, Inam A (2011) J Geophys Res 116:B01101. https://doi.org/10.1029/2010JB000862

  • Castańeda IS, Werne JP, Johnson TC, Filley TR (2009) Late Quaternary vegetation history of southeast Africa: the molecular isotopic record from Lake Malawi. Palaeogeogr Palaeoclimatol Palaeoecol 275:100–112

    Article  Google Scholar 

  • Chakraborty PP, Tandon SK, Saha S (2019) Development of Phanerozoic sedimentary basins of India. J Asian Earth Sci 184:103991

    Article  Google Scholar 

  • Chatterjee S, Goswami A, Scotese CR (2013) The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res 23:238–267

    Article  Google Scholar 

  • Chikaraishi Y, Naraoka H (2005) δ13C and δD identification of sources of lipid biomarkers in sediments of Lake Haruna (Japan). Geochim Cosmochim Acta 69:3285–3297

    Article  Google Scholar 

  • Chung SL, Lo CH, Lee TY, Zhang Y, Xie Y, Li X, Wang KL, Wang PL (1998) Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature 394:769–773

    Article  Google Scholar 

  • Clift PD (2020) Asian monsoon dynamics and sediment transport in SE Asia. J Asian Earth Sci 195:104352.

  • Cooray PG (1984) An introduction to the geology of Sri Lanka. 2nd revised edition, Ceylon National Museum Publication, Colombo, pp. 135–169.

  • D’Hondt S, Donaghay P, Zachos JC, Luttenberg D, Lindinger M (1998) Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282:276–279

    Article  Google Scholar 

  • Davies TA, Kidd RB, Ramsay STS (1995) A time-slice approach to the history of Cenozoic sedimentation in the Indian Ocean. Sed Geol 96:157–179

    Article  Google Scholar 

  • Desa M, Ramana MV, Ramprasad T (2006) Seafloor spreading magnetic anomalies south off Sri Lanka. Mar Geol 229:227–240

    Article  Google Scholar 

  • Dettman DL, Kohn MJ, Quade J, Ryerson FJ, Ojha TP, Hamidullah S (2001) Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology 29:31–34

    Article  Google Scholar 

  • Dissanayake CB, Chandrajith R (1999) Sri Lanka-Madagascar Gondwana linkage: evidence for a Pan-African mineral belt. J Geol 107:223–235

    Article  Google Scholar 

  • Dypvik H, Riber L, Burca F, Rüther D, Jargvoll D, Nagy J, Jochmann M (2011) The Paleocene-Eocene thermal maximum (PETM) in Svalbard – clay mineral and geochemical signals. Palaeogeogr Palaeoclimatol Palaeoecol 302:156–169

    Article  Google Scholar 

  • Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sediment input of submerged/ floating freshwater aquatic macrophytes. Org Geochem 31:745–749

    Article  Google Scholar 

  • France-Lanord C, Derry LA (1997) Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390:65–67

    Article  Google Scholar 

  • Gaillardet J, Galy A (2008) Himalaya-carbon sink or source? Science 320:1727–1728

    Article  Google Scholar 

  • Gaina C, Müller RD, Brown B, Ishihara T, Ivanov S (2007) Breakup and early spreading between India and Antarctica. Geophys J Int 170:151–169

    Article  Google Scholar 

  • Gertsch B, Keller G, Adatte T, Garg R, Prasad V, Berner Z, Fleitmann D (2011) Environmental effects of Deccan volcanism across the Cretaceous-Tertiary transition in Meghalaya, India. Earth Planet Sci Lett 310:272–285

    Article  Google Scholar 

  • Gombos AM, Powell WG, Norton IO (1995) The tectonic evolution of western India and its impact on hydrocarbon occurrences: an overview. Sed Geol 96:119–129

    Article  Google Scholar 

  • Gong C, Hollander DJ (1997) Differential contribution of bacteria to sedimentary organic matter in oxic and anoxic environments, Santa Monica Basin, California. Org Geochem 26:545–563

    Article  Google Scholar 

  • Gupta AK, Singh RK, Joseph S, Thomas E (2004) Indian Ocean high-productivity event (10–8 Ma): linked to global cooling or to the initiation of the Indian monsoons? Geology 32:753–756

    Article  Google Scholar 

  • Gupta S, Kumar K (2019) Precursors of the Paleocene-Eocene Thermal Maximum (PETM) in the Subathu Group, NW sub-Himalaya, India. J Asian Earth Sci 169:21–46

    Article  Google Scholar 

  • Harris N (2006) The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeogr Palaeoclimatol Palaeoecol 241:4–15

    Article  Google Scholar 

  • Hickey LJ, Doyle JA (1977) Early Cretaceous fossil evidence for angiosperm evolution. Bot Rev 43:3–104

    Article  Google Scholar 

  • Hong SK, Yi S, Shinn YJ (2020) Middle Albian climate fluctuation recorded in the carbon isotope composition of terrestrial plant matter. J Asian Earth Sci 196:104363

    Article  Google Scholar 

  • Huber BT, Watkins DK (1992) Biogeography of Campanian-Maastrichtian calcareous plankton in the region of the Southern Ocean: paleogeographic and paleoclimatic implications. The Antarctic Paleoenvironment: A Perspective on Global Change 56:31–60

  • Ibach LEJ (1982) Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. Am Asso Petrol Geol Bull 66:170–188

    Google Scholar 

  • Kaiho K, Kajiwara Y, Tazaki K, Ueshima M, Takeda N, Kawahata H, Arinobu T, Ishiwatari R, Hirai A, Lamolda MA (1999) Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: their decrease, subsequent warming, and recovery. Paleoceanography 14:511–524

    Article  Google Scholar 

  • Kapawar MR, Mamilla V (2020) Paleomagnetism and rock magnetism of early Cretaceous Rajmahal basalts, NE India: implications for paleogeography of the Indian subcontinent and migration of the Kerguelen hotspot. J Asian Earth Sci 201:104517

    Article  Google Scholar 

  • Keller G (2003) Biotic effects of impacts and volcanism. Earth Planet Sci Lett 215:249–264

    Article  Google Scholar 

  • Keller G (2004) Low-diversity, late Maastrichtian and early Danian planktic foraminiferal assemblages of the eastern Tethys. J Foramin Res 34:49–73

    Article  Google Scholar 

  • Keller G (2005) Biotic effects of late Maastrichtian mantle plume volcanism: implications for impacts and mass extinctions. Lithos 79:317–341

    Article  Google Scholar 

  • Keller G, Adatte T, Gardin S, Bartolini A, Bajpai S (2008) Main Deccan volcanism phase ends near the K-T boundary: evidence from the Krishna-Godavari Basin, SE India. Earth Planet Sci Lett 268:293–311

    Article  Google Scholar 

  • Keller G, Punekar J, Mateo P (2015) Upheavals during the Late Maastrichtian: volcanism, climate and faunal events preceding the end-Cretaceous mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 441:137–151

    Article  Google Scholar 

  • Kent DV, Muttoni G (2008) Equatorial convergence of India and early Cenozoic climate trends. Proc Natl Acad Sci 105:16065–16070

    Article  Google Scholar 

  • Kularathna EKCW, Pitawala HMTGA, Senaratne A, Ratnayake AS (2020) Play distribution and the hydrocarbon potential of the Mannar Basin, Sri Lanka. Journal of Petroleum Exploration and Production Technology 10:2225–2243

    Article  Google Scholar 

  • Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Sci Rev 75:29–57

    Article  Google Scholar 

  • Lasitha S, Twinkle D, Kurian PJ, Harikrishnan PR (2019) Geophysical evidence for marine prolongation of the Palghat-Cauvery shear system into the offshore Cauvery basin, Eastern continental margin of India. J Asian Earth Sci 184:103981

    Article  Google Scholar 

  • Le Fort P (1975) Himalayas: the collided range, present knowledge of the continental arc. Am J Sci 275:1–44

    Google Scholar 

  • Lees JA (2002) Calcareous nannofossil biogeography illustrates palaeoclimate change in the Late Cretaceous Indian Ocean. Cretac Res 23:537–634

    Article  Google Scholar 

  • Li T, Huang Z, Yin Y, Gou H, Zhang P (2020) Sedimentology and geochemistry of Cretaceous source rocks from the Tiancao Sag, Yin’e Basin, North China: implications for the enrichment mechanism of organic matters in small lacustrine rift basins. J Asian Earth Sci 204:104575

    Article  Google Scholar 

  • Licht A, Cappelle MV, Abels HA, Ladant JB, Alexandre JT, Lanord CF, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C, Terry D Jr, Adriaens R, Boura A, Guo Z, Soe AN, Quade J, Nivet GD, Jaeger JJ (2014) Asian monsoons in a late Eocene greenhouse world. Nature 513:501–506

    Article  Google Scholar 

  • Lokho K, Aitchison JC, Whiso K, Lhoupenyi D, Zhou R, Raju DSN (2020) Eocene foraminifers of the Naga Hills of Manipur, Indo-Myanmar Range (IMR): implications on age and basin evolution. J Asian Earth Sci 191:104259

    Article  Google Scholar 

  • Lourens LJ, Sluijs A, Kroon D, Zachos JC, Thomas E, Röhl U, Bowles J, Raffi I (2005) Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435:1083–1086

    Article  Google Scholar 

  • Lu N, Wang YD, Popa ME, Xie XP, Li LQ, Xi SN, Deng CT (2019) Sedimentological and paleoecological aspects of the Norian-Rhaetian transition (Late Triassic) in the Xuanhan area of the Sichuan Basin, Southwest China. Palaeoworld 28:334–345

    Article  Google Scholar 

  • McKenzie D, Sclater JG (1971) The evolution of the Indian Ocean since the late Cretaceous. Geophysics Journal 25:437–528

    Article  Google Scholar 

  • Métivier F, Gaudemer Y, Tapponnier P, Klein M (1999) Mass accumulation rates in Asia during the Cenozoic. Geophys J Int 137:280–318

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry–an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900

    Article  Google Scholar 

  • Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189:419–426

    Article  Google Scholar 

  • Müller PJ (1977) C/N ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochim Cosmochim Acta 41:765–776

    Article  Google Scholar 

  • Nair N, Pandey DK (2018) Cenozoic sedimentation in the Mumbai Offshore Basin: implications for tectonic evolution of the western continental margin of India. J Asian Earth Sci 152:132–144

    Article  Google Scholar 

  • Norton IO, Sclater JG (1979) A model for the evolution of the Indian Ocean and the breakup of Gondwanaland. J Geophys Res 84:6803–6830

    Article  Google Scholar 

  • O’Keefe JD, Ahrens TJ (1989) Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth. Nature 338:247–249

    Article  Google Scholar 

  • Pälike H, Norris RD, Herrle JO, Wilson PA, Coxall HK, Lear CH, Shackleton NJ, Tripati AK, Wade BS (2006) The heartbeat of the Oligocene climate system. Science 314:1894–1898

    Article  Google Scholar 

  • Pancost RD, Bass M, Geel BV, Damste JSS (2002) Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog. Org Geochem 33:675–690

    Article  Google Scholar 

  • Parmar V, Jamwal SS, Prasad GV, Palden L (2020) An Oligo-Miocene cricetid rodent from the Indus Group, NW Himalaya: constraints on the age of initiation of continental sedimentation in the India-Asia collision zone. J Asian Earth Sci 190:104190

    Article  Google Scholar 

  • Pearson PN, Foster GL, Wade BS (2009) Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature 461:1110–1113

    Article  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Article  Google Scholar 

  • Qin SX, Li YX, Li XH, Xu B, Luo H (2019) Paleomagnetic results of Cretaceous cherts from Zhongba, southern Tibet: new constraints on the India-Asia collision. J Asian Earth Sci 173:42–53

    Article  Google Scholar 

  • Quade J, Cerling TE, Bowman JR (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342:163–166

    Article  Google Scholar 

  • Ramana MV, Ramprasad T, Desa M (2001) Seafloor spreading magnetic anomalies in the Enderby Basin, East Antarctica. Earth Planet Sci Lett 191:241–255

    Article  Google Scholar 

  • Rao GN (2001) Sedimentation, stratigraphy and petroleum potential of Krishna-Godavari Basin, East Coast of India. Am Asso Petrol Geol Bull 85:1623–1643

    Google Scholar 

  • Rao GS, Singh A (2020) Crustal architecture and isostatic compensation of the Comorin Ridge, central Indian Ocean: implications for the breakup of east Gondwana. J Asian Earth Sci 199:104463

    Article  Google Scholar 

  • Ratnayake AS, Kularathne CW, Sampei Y (2018) Assessment of hydrocarbon generation potential and thermal maturity of the offshore Mannar Basin, Sri Lanka. J Pet Explor Prod Technol 8:641–654

    Article  Google Scholar 

  • Ratnayake AS, Sampei Y (2015) Characterization of organic matter and depositional environment of the Jurassic small sedimentary basins exposed in the northwest onshore area of Sri Lanka. Researches in Organic Geochemistry 31:15–28

    Google Scholar 

  • Ratnayake AS, Sampei Y (2019) Organic geochemical evaluation of contamination tracers on deepwater rock cutting from the Mannar Basin, Sri Lanka. J Pet Explor Prod Technol 9:989–996

    Article  Google Scholar 

  • Ratnayake AS, Sampei Y, Kularathne CW (2014) Stratigraphic responses to major depositional events from the Late Cretaceous to Miocene in the Mannar Basin, Sri Lanka. Journal of Geological Society of Sri Lanka 16:5–18

    Google Scholar 

  • Ratnayake AS, Sampei Y, Ratnayake NP, Roser BP (2017) Middle to late Holocene environmental changes in the depositional system of the tropical brackish Bolgoda Lake, coastal southwest Sri Lanka. Palaeogeogr Palaeoclimatol Palaeoecol 465:122–137

    Article  Google Scholar 

  • Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359:117–122

    Article  Google Scholar 

  • Rea DK, Dehn J, Driscoll NW, Farrell JW, Janecek TR, Owen RM, Pospichal JJ, Resiwati P (1990) Paleoceanography of the Eastern Indian-Ocean from ODP Leg-121 drilling on Broken Ridge. Geol Soc Am Bull 102:679–690

    Article  Google Scholar 

  • Ridgwell A, Zeebe RE (2005) The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet Sci Lett 234:299–315

    Article  Google Scholar 

  • Rotstein Y, Munschy M, Bernard A (2001) The Kerguelen Province revisited: additional constraints on the early development of the Southeast Indian Ocean. Mar Geophys Res 22:81–100

    Article  Google Scholar 

  • Sampei Y, Matsumoto E (2001) C/N ratios in a sediment core from Nakaumi Lagoon. southwest Japan. Geochem J 35:189–205

    Article  Google Scholar 

  • Sampei Y, Matsumoto E, Kamei T, Tokuoka T (1997a) Sulfur and organic carbon relationship in sediments from coastal brackish lakes in the Shimane Peninsula District, southwest, Japan. Geochem J 31:245–262

    Article  Google Scholar 

  • Sampei Y, Matsumoto E, Tokuoka T, Inoue D (1997b) Changes in accumulation rate of organic carbon during the last 8000 years in sediments of Nakaumi Lagoon, Japan. Mar Chem 58:39–50

    Article  Google Scholar 

  • Scotese, C.R., Illich, H., Zumberge, J., Brown, S., Moore, T., 2011. The GANDOLPH Project: Year Four Report: Paleogeographic and Paleoclimatic Controls on Hydrocarbon Source Rock Deposition, A Report on the Methods Employed, the Results of the Paleoclimate Simulations (FOAM), and Oils/Source Rock Compilation for the Oligocene (30 Ma), Cretaceous/Tertiary (70 Ma), Permian/Triassic (250 Ma), Silurian/ Devonian (400 Ma), and Cambrian/Ordovician (480 Ma), Conclusions at the End of Year Four, April 2011. GeoMark Research Ltd., Houston, Texas. 219 pp

  • Sigurdsson H, D’Hondt S, Carey S (1992) The impact of the Cretaceous/Tertiary bolide on evaporite terrane and generation of major sulfuric acid aerosol. Earth Planet Sci Lett 109:543–559

    Article  Google Scholar 

  • Sreejith KM, Krishna KS, Bansal AR (2008) Structure and isostatic compensation of the Comorin Ridge, north central Indian Ocean. Geophys J Int 175:729–741

    Article  Google Scholar 

  • Storey M, Mahoney JJ, Saunders AD, Duncan RA, Kelley SP, Coffin MF (1995) Timing of hot spot-related volcanism and the breakup of Madagascar and India. Science 267:852–855

    Article  Google Scholar 

  • Subrahmanyam C, Chand S (2006) Evolution of the passive continental margins of India – a geophysical appraisal. Gondwana Res 10:167–178

    Article  Google Scholar 

  • Tantawy AAA, Keller G, Pardo A (2009) Late Maastrichtian volcanism in the Indian Ocean: effects on calcareous nannofossils and planktic foraminifera. Palaeogeogr Palaeoclimatol Palaeoecol 284:63–87

    Article  Google Scholar 

  • Teng X, Fang X, Kaufman AJ, Liu C, Wang J, Zan J, Piatak NM (2019) Sedimentological and mineralogical records from drill core SKD1 in the Jianghan Basin, Central China, and their implications for late Cretaceous–early Eocene climate change. J Asian Earth Sci 182:103936

    Article  Google Scholar 

  • Tripati AK, Roberts CD, Eagle RA (2009) Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326:1394–1397

    Article  Google Scholar 

  • Valdés J, Sifeddine A, Lallier-Verges E, Ortlieb L (2004) Petrographic and geochemical study of organic matter in surficial laminated sediments from an upwelling system (Mejillones del Sur Bay, Northern Chile). Org Geochem 35:881–894

    Article  Google Scholar 

  • Volk T (1989) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial. Nature 337:637–640

    Article  Google Scholar 

  • Yang H, Huang Y, Ma C, Zhang Z, Wang C (2020) Recognition of Milankovitch cycles in XRF core-scanning records of the Late Cretaceous Nenjiang Formation from the Songliao Basin (northeastern China) and their paleoclimate implications. J Asian Earth Sci 194:104183

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zachos JC, Arthur MA, Dean WE (1989) Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337:61–64

    Article  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  Google Scholar 

  • Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ, McCarren H, Kroon D (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1611–1615

    Article  Google Scholar 

  • Zhisheng A, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411:62–66

    Article  Google Scholar 

  • Zhou W, Xie S, Meyers PA, Zheng Y (2005) Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Org Geochem 36:1272–1284

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the financial support for this study provided by Accelerating Higher Education Expansion and Development (AHEAD) Development Oriented Research (DOR) grant. The author also acknowledges the support of MEXT Scholarship (the Japanese Ministry of Education and Culture) for completing early-stage research publications linked to this project. Furthermore, I would like to greatly acknowledge Prof. Yoshikazu Sampei, Shimane University Japan, and Prof. Thomas Algeo, University of Cincinnati, USA, for valuable comments and suggestions. I would also like to thank Director General Saliya Wickramasuriya and Petroleum Geologist C.W. Kularathne of the Petroleum Resources Development Secretariat (PRDS) of Sri Lanka for providing the rock cuttings for this study. I thank Dr. Patrick Roberts, Max Planck Institute for the Science of Human History, Germany, for editorial suggestions, and Dr. Andrew Green, Editor-in-Chief, and anonymous reviewers for their help and critical reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amila Sandaruwan Ratnayake.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratnayake, A.S. Late Cretaceous to Miocene Paleoclimatic changes in the Indian Ocean: insights from the deepwater Mannar Basin, Sri Lanka. Geo-Mar Lett 41, 37 (2021). https://doi.org/10.1007/s00367-021-00710-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00367-021-00710-x

Navigation