Skip to main content
Log in

Solid-phase synthesis and evaluation of linear and cyclic ferrocenoyl/ruthenocenoyl water-soluble hexapeptides as potential antibacterial compounds

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A series of novel water-soluble short peptide-bioconjugates containing a ferrocenoyl (Fc) or ruthenocenoyl (Rc) unit was synthesized and characterized to combine the unique activity of ferrocene and the isoelectronic ruthenocene with precisely designed peptide structures. We aim at evaluating these bioconjugates as a new class of OrganoMetallic Short AntiMicrobial Peptides (OM-SAMPs). The series of OM-SAMPs was designed with a set of linear and “head-to-tail” cyclic metallocene-based hexapeptides derived from the homo-sequence H-KKKKKK-NH2 by substitution of lysine (K) by tryptophan (W) and by orthogonal derivatization of the ε-N-amine group of lysine by a metallocene moiety. Peptide conjugates were characterized by RP-HPLC, mass spectrometry (ESI and MALDI-TOF) and circular dichroism (CD) spectroscopy. Gram-positive and Gram-negative antibacterial activity testings were carried out to explore the role of insertion of the metallocene fragment into the peptide, and the effect of the modification of the cationic charge and aromatic residues on the physiochemical properties of these OM-SAMPs. These results show that the insertion of two tryptophan residues and ferrocenoyl/ruthenocenoyl moieties into a linear homo-sequence peptides increase significantly their antibacterial activity with minimum inhibitory concentration values as low as 5 μM for the most active compounds. However, “head-to-tail” cyclic metallocene-based hexapeptides were not active against Gram-negative bacteria up to concentrations of 50 μM. These studies provide a better understanding of the role of structural modifications to enhance antibacterial peptide activity, which is promising for their therapeutic application.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Learning M, Cookbook R (2017) Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis, WHO. https://www.who.int/medicines/areas/rational_use/PPLreport_2017_09_19.pdf?ua=1. Accessed 10 Dec 2020

  2. 2019 Antibacterial agents in clinical development (2019) WHO, Technical Report. https://www.who.int/publications/i/item/9789240000193. Accessed 19 Apr 2021

  3. Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, Giulianotti MA, Apidianakis Y, Bradfute S, Ferguson AL, Cherkasov A, Seleem MN, Pinilla C, De la Fuente-Nunez C, Lazaridis T, Dai T, Houghten RA, Hancock REW, Tegos GP (2020) The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis 20:e216–e230. https://doi.org/10.1016/S1473-3099(20)30327-3

    Article  CAS  PubMed  Google Scholar 

  4. Reinhardt A, Neundorf I (2016) Design and application of antimicrobial peptide conjugates. Int J Mol Sci. https://doi.org/10.3390/ijms17050701

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ramesh S, Govender T, Kruger HG, Kruger HG, De la Torre BG, Albericio F (2016) Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents. J Pept Sci. https://doi.org/10.1002/psc.2894

    Article  PubMed  Google Scholar 

  6. Lau QY, Choo XY, Lim ZX, Kong XN, Ng FM, Ang MJY, Hill J, Chia CSB (2015) A head-to-head comparison of the antimicrobial activities of 30 ultra-short antimicrobial peptides against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Int J Pept Res Ther 21:21–28. https://doi.org/10.1007/s10989-014-9440-x

    Article  CAS  Google Scholar 

  7. Wenzel M, Chiriac AI, Otto A, Zweytick D, May C, Schumacher C, Gust R, Albada HB, Penkova M, Krämer U, Erdmann R, Metzler-Nolte N, Straus SK, Bremer E, Becher D, Brötz-Oesterhelt H, Sahl H-G, Bandow JE (2014) Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc Natl Acad Sci USA 111:E1409–E1418. https://doi.org/10.1073/pnas.1319900111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guzmán F, Marshall S, Ojeda C, Albericio F, Carvajal-Rondanelli P (2013) Inhibitory effect of short cationic homopeptides against Gram-positive bacteria. J Pept Sci 19:792–800. https://doi.org/10.1002/psc.2578

    Article  CAS  PubMed  Google Scholar 

  9. Gopal R, Seo CH, Song PI, Park Y (2013) Effect of repetitive lysine-tryptophan motifs on the bactericidal activity of antimicrobial peptides. Amino Acids 44:645–660. https://doi.org/10.1007/s00726-012-1388-6

    Article  CAS  PubMed  Google Scholar 

  10. Carvajal-Rondanelli P, Aróstica M, Álvarez CA, Ojeda C, Albericio F, Aguilar LF, Marshall SH, Guzmán F (2018) Understanding the antimicrobial properties/activity of an 11-residue Lys homopeptide by alanine and proline scan. Amino Acids 50:557–568. https://doi.org/10.1007/s00726-018-2542-6

    Article  CAS  PubMed  Google Scholar 

  11. André S, Washington SK, Darby E, Vega MM, Filip AD, Ash NS, Muzikar KA, Christophe Piesse C, Foulon T, O’Leary DJ, Ladram A (2015) Structure–activity relationship-based optimization of small temporin-SHf analogs with potent antibacterial activity. ACS Chem Biol 10:2257–2266. https://doi.org/10.1021/acschembio.5b00495

    Article  CAS  PubMed  Google Scholar 

  12. Liu Z, Brady A, Young A, Rasimick B, Chen K, Zhou C, Kallenbach NR (2007) Length effects in antimicrobial peptides of the (RW)n series. Antimicrob Agents Chemother 51:597–603. https://doi.org/10.1128/AAC.00828-06

    Article  CAS  PubMed  Google Scholar 

  13. Albada HB, Prochnow P, Bobersky S, Bandow JE, Metzler-Nolte N (2014) Highly active antibacterial ferrocenoylated or ruthenocenoylated Arg-Trp peptides can be discovered by an L-to-D substitution scan. Chem Sci 5:4453–4459. https://doi.org/10.1039/c4sc01822b

    Article  CAS  Google Scholar 

  14. Mojsoska B, Jenssen H (2015) Peptides and peptidomimetics for antimicrobial drug design. Pharmaceuticals 8:366–415

    Article  CAS  Google Scholar 

  15. Strøm MB, Haug BE, Skar ML, Stensen W, Stiberg T, Svendsen JS (2003) The pharmacophore of short cationic antibacterial peptides. J Med Chem 46:1567–1570. https://doi.org/10.1021/jm0340039

    Article  CAS  PubMed  Google Scholar 

  16. Das P, Sercu T, Wadhawan K, Padhi I, Gehrmann S, Cipcigan F, Chenthamarakshan V, Strobelt H, Dos Santos C, Chen PY, Yang YY, Tan JPK, Hedrick J, Crain J, Mojsilovic A (2021) Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat Biomed Eng. https://doi.org/10.1038/s41551-021-00689-x

    Article  PubMed  Google Scholar 

  17. Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24:536–547

    Article  CAS  Google Scholar 

  18. Liskamp RMJ, Rijkers DTS, Kruijtzer JAW, Kemmink J (2011) Peptides and proteins as a continuing exciting source of inspiration for peptidomimetics. ChemBioChem 12:1626–1653. https://doi.org/10.1002/cbic.201000717

    Article  CAS  PubMed  Google Scholar 

  19. Chantson JT, Falzacappa MVV, Crovella S, Metzler-Nolte N (2006) Solid-phase synthesis, characterization, and antibacterial activities of metallocene-peptide bioconjugates. ChemMedChem 1:1268–1274. https://doi.org/10.1002/cmdc.200600117

    Article  CAS  PubMed  Google Scholar 

  20. Chantson JT, Falzacappa MVV, Crovella S, Metzler-Nolte N (2005) Antibacterial activities of ferrocenoyl- and cobaltocenium-peptide bioconjugates. J Organomet Chem 690:4564–4572. https://doi.org/10.1016/j.jorganchem.2005.07.007

    Article  CAS  Google Scholar 

  21. Chow HY, Zhang Y, Matheson E, Li X (2019) Ligation technologies for the synthesis of cyclic peptides. Chem Rev 119:9971–10001

    Article  CAS  Google Scholar 

  22. Mandal D, Nasrolahi Shirazi A, Parang K (2011) Cell-penetrating homochiral cyclic peptides as nuclear-targeting molecular transporters. Angew Chem Int Ed 50:9633–9637. https://doi.org/10.1002/anie.201102572

    Article  CAS  Google Scholar 

  23. Albada B, Metzler-Nolte N (2016) Organometallic-peptide bioconjugates: synthetic strategies and medicinal applications. Chem Rev 116:11797–11839. https://doi.org/10.1021/acs.chemrev.6b00166

    Article  CAS  PubMed  Google Scholar 

  24. Gómez J, Klahn AH, Fuentealba M, Sierra D, Olea-Azar C, Maya JD, Medina ME (2017) Ferrocenyl and cyrhetrenyl azines containing a 5-nitroheterocyclic moiety: synthesis, structural characterization, electrochemistry and evaluation as anti-Trypanosoma cruzi agents. J Organomet Chem 839:108–115. https://doi.org/10.1016/j.jorganchem.2017.03.014

    Article  CAS  Google Scholar 

  25. Salmain M, Metzler-Nolte N (2008) The bioorganometallic chemistry of ferrocene. In: Štěpnička P (ed) Ferrocenes: ligands, materials and biomolecules. Wiley, Chichester, pp 499–639. https://doi.org/10.1002/9780470985663

    Chapter  Google Scholar 

  26. Patra M, Gasser G (2017) The medicinal chemistry of ferrocene and its derivatives. Nat Rev Chem 0066:1–12

    Google Scholar 

  27. Wang R, Chen H, Yan W, Zheng M, Zhang T, Zhang Y (2020) Ferrocene-containing hybrids as potential anticancer agents: current developments, mechanisms of action and structure–activity relationships. Eur J Med Chem 190:112109. https://doi.org/10.1016/j.ejmech.2020.112109

    Article  CAS  PubMed  Google Scholar 

  28. Kondratskyi A, Kondratska K, Vanden Abeele F, Gordienko D, Dubois C, Toillon RA, Slomianny C, Lemière S, Delcourt P, Dewailly E, Skryma R, Biot C, Prevarskaya N (2017) Ferroquine, the next generation antimalarial drug, has antitumor activity. Sci Rep 7:1–15. https://doi.org/10.1038/s41598-017-16154-2

    Article  CAS  Google Scholar 

  29. van Staveren DR, Metzler-Nolte N (2004) Bioorganometallic chemistry of ferrocene. Chem Rev 104:5931–5985. https://doi.org/10.1021/cr0101510

    Article  CAS  PubMed  Google Scholar 

  30. Philip AT, Chacko S, Ramapanicker R (2015) Synthesis of stable C-linked ferrocenyl amino acids and their use in solution-phase peptide synthesis. J Pept Sci 21:887–892. https://doi.org/10.1002/psc.2831

    Article  CAS  PubMed  Google Scholar 

  31. Gross A, Metzler-Nolte N (2009) Synthesis and characterisation of a ruthenocenoyl bioconjugate with the cyclic octapeptide octreotate. J Organomet Chem 694:1185–1188. https://doi.org/10.1016/j.jorganchem.2008.09.071

    Article  CAS  Google Scholar 

  32. Gross A, Neukamm M, Metzler-Nolte N (2011) Synthesis and cytotoxicity of a bimetallic ruthenocene dicobalt-hexacarbonyl alkyne peptide bioconjugate. Dalt Trans 40:1382–1386. https://doi.org/10.1039/c0dt01113d

    Article  CAS  Google Scholar 

  33. Slootweg JC, Prochnow P, Bobersky S, Bobersky S, Bandow JE, Metzler-Nolte N (2017) Exploring structure-activity relationships in synthetic antimicrobial peptides (synAMPs) by a ferrocene scan. Eur J Inorg Chem 2017:360–367. https://doi.org/10.1002/ejic.201600799

    Article  CAS  Google Scholar 

  34. Bauke Albada H, Chiriac AI, Wenzel M, Penkova M, Bandow JE, Sahl H-G, Metzler-Nolte N (2012) Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups. Beilstein J Org Chem 8:1753–1764. https://doi.org/10.3762/bjoc.8.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Southam HM, Butler JA, Chapman JA, Poole RK (2017) The microbiology of ruthenium complexes, 1st edn. Elsevier Ltd., Amsterdam

    Google Scholar 

  36. Li F, Collins JG, Keene FR (2015) Ruthenium complexes as antimicrobial agents. Chem Soc Rev 44:2529–2542. https://doi.org/10.1039/c4cs00343h

    Article  CAS  PubMed  Google Scholar 

  37. Kenny RG, Marmion CJ (2019) Toward multi-targeted platinum and ruthenium drugs—a new paradigm in cancer drug treatment regimens? Chem Rev 119:1058–1137. https://doi.org/10.1021/acs.chemrev.8b00271

    Article  CAS  PubMed  Google Scholar 

  38. Gómez J, Sierra D, Cárdenas C, Guzmán F (2020) Bio-organometallic peptide conjugates: recent advances in their synthesis and prospects for biomedical application. Curr Org Chem 24:2508–2523. https://doi.org/10.2174/1385272824666200309093938

    Article  CAS  Google Scholar 

  39. Albada B, Metzler-Nolte N (2017) Highly potent antibacterial organometallic peptide conjugates. Acc Chem Res 50:2510–2518. https://doi.org/10.1021/acs.accounts.7b00282

    Article  CAS  PubMed  Google Scholar 

  40. Costa NCS, Piccoli JP, Santos-Filho NA, Clementino LC, Fusco-Almeida AM, De Annunzio SR, Fontana CR, Verga JBM, Eto SF, Pizauro-Junior JM, Graminha MAS, Cilli EM (2020) Antimicrobial activity of RP-1 peptide conjugate with ferrocene group. PLoS One 15:1–22. https://doi.org/10.1371/journal.pone.0228740

    Article  CAS  Google Scholar 

  41. Hoffknecht BC, Prochnow P, Bandow JE, Metzler-Nolte N (2016) Influence of metallocene substitution on the antibacterial activity of multivalent peptide conjugates. J Inorg Biochem 160:246–249. https://doi.org/10.1016/j.jinorgbio.2016.02.036

    Article  CAS  PubMed  Google Scholar 

  42. Oelmann J, Miller RG, Baabe D, Metzler-Nolte N, Bröring M, (2020) Biometal corrole active esters and their amino acid and peptide conjugates. Eur J Inorg Chem 2020:3059–3069. https://doi.org/10.1002/ejic.202000472

    Article  CAS  Google Scholar 

  43. Soldevila-Barreda JJ, Metzler-Nolte N (2019) Intracellular catalysis with selected metal complexes and metallic nanoparticles: advances toward the development of catalytic metallodrugs. Chem Rev 119:829–869. https://doi.org/10.1021/acs.chemrev.8b00493

    Article  CAS  PubMed  Google Scholar 

  44. Slootweg JC, Albada HB, Siegmund D, Metzler-Nolte N (2016) Efficient reagent-saving method for the N-terminal labeling of bioactive peptides with organometallic carboxylic acids by solid-phase synthesis. Organometallics 35:3192–3196. https://doi.org/10.1021/acs.organomet.6b00544

    Article  CAS  Google Scholar 

  45. Perrin DD, Armarego WLF (1996) Purification of laboratory chemicals, 8th edn. Oxford, pp 7–29

    Google Scholar 

  46. Kay C, Lorthioir OE, Parr NJ, Congreve M, McKeown SC, Scicinski JJ, Ley SV (2000) Solid-phase reaction monitoring—chemical derivatization and off-bead analysis. Biotechnol Bioeng 71:110–118. https://doi.org/10.1002/1097-0290(2000)71:2%3c110::AID-BIT1002%3e3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  47. Pires DAT, Bemquerer MP, Do Nascimento CJ (2014) Some mechanistic aspects on Fmoc solid phase peptide synthesis. Int J Pept Res Ther 20:53–69. https://doi.org/10.1007/s10989-013-9366-8

    Article  CAS  Google Scholar 

  48. Luna OF, Gomez J, Cárdenas C, Albericio F, Marshall SH, Guzmán F (2016) Deprotection reagents in Fmoc solid phase peptide synthesis: moving away from piperidine? Molecules. https://doi.org/10.3390/molecules21111542

    Article  PubMed  PubMed Central  Google Scholar 

  49. Azkargorta M, Soria J, Ojeda C, Guzman F, Acera A, Iloro I, Suárez T, Elortza F (2015) Human basal tear peptidome characterization by CID, HCD, and ETD followed by in silico and in vitro analyses for antimicrobial peptide identification. J Proteome Res 14:2649–2658. https://doi.org/10.1021/acs.jproteome.5b00179

    Article  CAS  PubMed  Google Scholar 

  50. Segura C, Guzmán F, Salazar LM, Patarroyo ME, Orduz S, Lemeshko V (2007) BTM-P1 polycationic peptide biological activity and 3D-dimensional structure. Biochem Biophys Res Commun 353:908–914. https://doi.org/10.1016/j.bbrc.2006.12.113

    Article  CAS  PubMed  Google Scholar 

  51. Roesner S, Saunders GJ, Wilkening I, Jayawant E, Geden JV, Kerby P, Dixon AM, Notman R, Shipman M (2019) Macrocyclisation of small peptides enabled by oxetane incorporation. Chem Sci 10:2465–2472. https://doi.org/10.1039/c8sc05474f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gross JH (2017) Mass spectrometry, a textbook, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  53. Liu H, Patron A, Wang Y, Dasgupta PK (2020) Exploiting adduct formation through an auxiliary spray in liquid chromatography-electrospray ionization mass spectrometry to improve charge-carrier identification. J Chromatogr A. https://doi.org/10.1016/j.chroma.2020.461601

    Article  PubMed  Google Scholar 

  54. Uçaktürk E, Başaran AA, Demirel AH (2020) Effect of the mobile phase compositions on the confirmation analysis of some prohibited substances in sport by LC–ESI–MS/MS. Chromatographia 83:1397–1411. https://doi.org/10.1007/s10337-020-03957-1

    Article  CAS  Google Scholar 

  55. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    Article  Google Scholar 

  56. Chen PW, Shyu CL, Mao FC (2003) Antibacterial activity of short hydrophobic and basic-rich peptides. Am J Vet Res 64:1088–1092. https://doi.org/10.2460/ajvr.2003.64.1088

    Article  CAS  PubMed  Google Scholar 

  57. Thermofisher scientific. https://www.thermofisher.com/cl/es/home/life-science/protein-biology/peptides-proteins/custom-peptide-synthesis-services/peptide-analyzing-tool.html. Accessed 4 Nov 2020

  58. Peptide 2.0 Inc. (2021) https://www.peptide2.com/N_peptide_hydrophobicity_hydrophilicity.php. Accessed 4 Nov 2020

  59. Woody RW (1994) Contributions of tryptophan side chains to the far-ultraviolet circular dichroism of proteins. Eur Biophys J 23:253–262. https://doi.org/10.1007/BF00213575

    Article  CAS  PubMed  Google Scholar 

  60. Jobin ML, Blanchet M, Henry S, Chaignepain S, Manigand C, Castano S, Lecomte S, Burlina F, Sagan S, Alves ID (2015) The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Biochim Biophys Acta Biomembr 1848:593–602. https://doi.org/10.1016/j.bbamem.2014.11.013

    Article  CAS  Google Scholar 

  61. Walrant A, Correia I, Jiao CY, Lequin O, Bent EH, Goasdoué N, Lacombe C, Chassaing G, Sagan S, Alves ID (2011) Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. Biochim Biophys Acta Biomembr 1808:382–393. https://doi.org/10.1016/j.bbamem.2010.09.009

    Article  CAS  Google Scholar 

  62. Gopal R, Kim YJ, Seo CH, Hahma K-S, Park Y (2011) Reversed sequence enhances antimicrobial activity of a synthetic peptide. J Pept Sci 17:329–334. https://doi.org/10.1002/psc.1369

    Article  CAS  PubMed  Google Scholar 

  63. Kirin SI, Kraatz HB, Metzler-Nolte N (2006) Systematizing structural motifs and nomenclature in 1, n′-disubstituted ferrocene peptides. Chem Soc Rev 35:348–354. https://doi.org/10.1039/b511332f

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.G. acknowledge to FONDECYT-Postdoctoral Chile (Grant 3170507). D.S. acknowledge to Instituto de Química y Bioquímica and Facultad de Ciencias of the Universidad de Valparaíso for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johana Gómez or Diego Sierra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

775_2021_1877_MOESM1_ESM.pdf

The Supporting Information is available free of charge on the website at https://doi.org/10.1007/s00775-021-01877-5. HPLC and mass spectra of OM-SAMPs and as well as exemplary growth-inhibitory effect on Gram-positive and Gram-negative bacteria (MIC assays) and HPLC stability test. (PDF 5420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, J., Sierra, D., Ojeda, C. et al. Solid-phase synthesis and evaluation of linear and cyclic ferrocenoyl/ruthenocenoyl water-soluble hexapeptides as potential antibacterial compounds. J Biol Inorg Chem 26, 599–615 (2021). https://doi.org/10.1007/s00775-021-01877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01877-5

Keywords

Navigation