Skip to main content
Log in

Borsuk’s partition conjecture

  • Original Paper
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

In 1933, Borsuk proposed the following problem: Can every bounded set in \({{\mathbb{E}}^n}\) be divided into n + 1 subsets of smaller diameter? This problem has been studied by many authors, and a lot of partial results have been discovered. In particular, Kahn and Kalai’s counterexamples surprised the mathematical community in 1993. Nevertheless, the problem is still far away from being completely resolved. This paper presents a broad review on related subjects and, based on a novel reformulation, introduces a computer proof program to deal with this challenging problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Bárány and A.M. Vershik, On the number of convex lattice polytopes, Geom. Funct. Anal., 2 (1992), 381–393.

    Article  MathSciNet  Google Scholar 

  2. V.G. Boltyanskii and I.T. Gohberg, Results and Problems in Combinatorial Geometry, Cambridge Univ. Press, Cambridge, 1985; Nauka, Moscow, 1965.

    Book  Google Scholar 

  3. A. Bondarenko, On Borsuk’s conjecture for two-distance sets, Discrete Comput. Geom., 51 (2014), 509–515.

    Article  MathSciNet  Google Scholar 

  4. T. Bonnesen and W. Fenchel, Theorie der Konvexen Körper, Springer-Verlag, 1934.

  5. K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math., 20 (1933), 177–190.

    Article  Google Scholar 

  6. J. Bourgain and J. Lindenstrauss, On covering a set in RN by balls of the same diameter, In: Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1469, Springer-Verlag, 1991, pp. 138–144.

  7. G.D. Chakerian and H. Groemer, Convex bodies of constant width, In: Convexity and Its Applications, (eds. P.M. Gruber and J.M. Wills), Birkhäuser, 1983, pp. 49–96.

  8. L. Danzer, Über Durchschnittseigenschaften n-dimensionaler Kugelfamilien, J. Reine Angew. Math., 208 (1961), 181–203.

    MathSciNet  MATH  Google Scholar 

  9. H.G. Eggleston, Covering a three-dimensional set with sets of smaller diameter, J. London Math. Soc., 30 (1955), 11–24.

    Article  MathSciNet  Google Scholar 

  10. H.G. Eggleston, Convexity, Cambridge Tracts in Mathematics and Mathematical Physics, 47, Cambridge Univ. Press, Cambridge, 1958.

    Google Scholar 

  11. P. Frankl and R.M. Wilson, Intersection theorems with geometric consequences, Combinatorica, 1 (1981), 357–368.

    Article  MathSciNet  Google Scholar 

  12. D. Gale, On inscribing n-dimensional sets in a regular n-simplex, Proc. Amer. Math. Soc., 4 (1953), 222–225.

    MathSciNet  MATH  Google Scholar 

  13. I.Z. Gohberg and A.S. Markus, One problem on covering convex figures by similar figures, Izv. Mold. Fil. Akad. Nauk. SSSR., 76 (1960), 87–90.

    Google Scholar 

  14. B. Grünbaum, Borsuk’s partition conjecture in Minkowski planes, Bull. Res. Council Israel Sect. F, 7F (1957), 25–30.

    MathSciNet  MATH  Google Scholar 

  15. B. Grünbaum, Borsuk’s problem and related questions, Proc. Sympos. Pure Math., 7 (1963), 271–284.

    Article  MathSciNet  Google Scholar 

  16. H. Hadwiger, Überdeckung einer Menge durch Mengen kleineren Durchmessers, Comment. Math. Helv., 18 (1945), 73–75.

    Article  MathSciNet  Google Scholar 

  17. H. Hadwiger, Mitteilung betreffend meine Note: Überdeckung einer Menge durch Mengen kleineren Durchmessers, Comment. Math. Helv., 19 (1946), 72–73.

    Article  MathSciNet  Google Scholar 

  18. H. Hadwiger, Ungelöste Probleme Nr. 20, Elem. Math., 12 (1957), 121.

    MathSciNet  Google Scholar 

  19. A. Heppes, On the partitioning of three-dimensional point-sets into sets of smaller diameter (Hungarian), Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 7 (1957), 413–416.

    MathSciNet  Google Scholar 

  20. A. Heppes and P. Révész, Zum Borsukschen Zerteilungsproblem, Acta Math. Acad. Sci. Hungar., 7 (1956), 159–162.

    Article  MathSciNet  Google Scholar 

  21. A. Hinrichs and C. Richter, New sets with large Borsuk numbers, Discrete Math., 270 (2003), 137–147.

    Article  MathSciNet  Google Scholar 

  22. T. Jenrich and A.E. Brouwer, A 64-dimensional counterexample to Borsuk’s conjecture, Electron. J. Combin., 21 (2014), 4.29.

    Article  MathSciNet  Google Scholar 

  23. J. Kahn and G. Kalai, A counterexample to Borsuk’s conjecture, Bull. Amer. Math. Soc. (N.S.), 29 (1993), 60–62.

    Article  MathSciNet  Google Scholar 

  24. D.G. Larman, Open problem 6, In: Convexity and Graph Theory, (eds. M. Rosenfeld and J. Zaks), Ann. Discrete Math., 20, North Holland, 1984, p. 336.

  25. M. Lassak, An estimate concerning Borsuk partition problem, Bull. Acad. Polon. Sci. Sér. Sci. Math., 30 (1982), 449–451.

    MathSciNet  MATH  Google Scholar 

  26. M. Lassak, Solution of Hadwiger’s covering problem for centrally symmetric convex bodies in E3, J. London Math. Soc. (2), 30 (1984), 501–511.

    Article  MathSciNet  Google Scholar 

  27. H. Lebesgue, Sur quelques questions de minimum, relatives aux corbes orbiformes, et sur leurs rapports avec le calcul des variations, J. Math. Pures Appl., 4 (1921), 67–91.

    MATH  Google Scholar 

  28. H. Lenz, Zur Zerlegung von Punktmengen in solche kleineren Durchmessers, Arch. Math., 6 (1955), 413–416.

    Article  MathSciNet  Google Scholar 

  29. F.W. Levi, Ein geometrisches Überdeckungsproblem, Arch. Math. (Basel), 5 (1954), 476–478.

    Article  MathSciNet  Google Scholar 

  30. H. Liu and C. Zong, On the classification of convex lattice polytopes, Adv. Geom., 11 (2011), 711–729.

    Article  MathSciNet  Google Scholar 

  31. H. Martini, L. Montejano and D. Oliveros, Bodies of Constant Width, Birkhäuser, 2019.

  32. A. Nilli, On Borsuk’s problem, In: Jerusalem Combinatorics’ 93, Contemp. Math., 178, Amer. Math. Soc., Providencs, RI, 1994, pp. 209–210.

    Google Scholar 

  33. J. Pál, Über ein elementares Variationsproblem (Danish), Bull. de l’Acad. de Dan., 3 (1920), 35.

    MATH  Google Scholar 

  34. I. Papadoperakis, An estimate for the problem of illumination of the boundary of a convex body in E3, Geom. Dedicata, 75 (1999), 275–285.

    Article  MathSciNet  Google Scholar 

  35. J. Perkal, Sur la subdivision des ensembles en parties de diamètre inférieur, Colloq. Math., 1 (1947), 45.

    Google Scholar 

  36. A.S. Riesling, Borsuk’s problem in three-dimensional spaces of constant curvature, Ukr. Geom. Sbornik, 11 (1971), 78–83.

    Google Scholar 

  37. C.A. Rogers, Symmetrical sets of constant width and their partitions, Mathematika, 18 (1971), 105–111.

    Article  MathSciNet  Google Scholar 

  38. O. Schramm, Illuminating sets of constant width, Mathematika, 35 (1988), 180–189.

    Article  MathSciNet  Google Scholar 

  39. L. Yu and C. Zong, On the blocking number and the covering number of a convex body, Adv. Geom., 9 (2009), 13–29.

    Article  MathSciNet  Google Scholar 

  40. C. Zong, Some remarks concerning kissing numbers, blocking numbers and covering numbers, Period. Math. Hungar., 30 (1995), 233–238.

    Article  MathSciNet  Google Scholar 

  41. C. Zong, The kissing number, blocking number and covering number of a convex body, In: Surveys on Discrete and Computational Geometry: Twenty Years Later, Contemp. Math., 453, Amer. Math. Soc., Providence, RI, 2008, pp. 529–548.

    Chapter  Google Scholar 

  42. C. Zong, A quantitative program for Hadwiger’s covering conjecture, Sci. China Math., 53 (2010), 2551–2560.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC11921001), the National Key Research and Development Program of China (2018YFA0704701), and 973 Program 2013CB834201. The author is grateful to the referee for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanming Zong.

Additional information

Communicated by: Toshiyuki Kobayashi

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, C. Borsuk’s partition conjecture. Jpn. J. Math. 16, 185–201 (2021). https://doi.org/10.1007/s11537-021-2007-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-021-2007-7

Keywords and phrases

Mathematics Subject Classification (2020)

Navigation