Skip to main content

Advertisement

Log in

Preparation of poly(eugenol-co-methyl methacrylate)/polypropylene blend by creative route approach: structural and thermal characterization

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Poly(eugenol-co-methylmethacrylate)/polypropylene blends were successfully prepared using methyl methacrylate (MMA), eugenol (Eg) and polypropylene (PP). First, poly(eugenol-co-methylmethacrylate) (poly(Eg-co-MMA)) was synthesized by photopolymerizaiton in one step at ambient temperature and without solvent. Benzophenone and triethylamine were used as photoinitiator and hydrogen donor, respectively. The second stage is the blending approach between polypropylene and poly(Eg-co-MMA) copolymer. The anti-bacterial test was carried out using the agar well diffusion. Escherichia coli, Staphylococcus aureus bacterial species were tested using Clinical and Laboratory Standards Institute (CLSI) Disk-Diffusion method in antibacterial analysis. As a result of these studies, the blend polymers (PEgMMA1:1)30-PP and (PEgMMA1:1)50-PP showed activity against E. coli Gram-negative bacteria. Zone diameters are 7 ± 0.00 mm and 5.25 ± 0.25 mm for (PEgMMA1:1)30-PP and (PEgMMA1:1)50-PP, respectively. No activity has been observed against S. aureus bacteria. In antimicrobial tests, it was determined that the polymers did not show a high antibacterial property as expected. Structural characterization and thermal properties of the synthesized terpolymers were performed by FTIR (Fourier-transform infrared spectroscopy), 1H NMR (nuclear magnetic resonance spectroscopy), TG-DTG (thermogravimetry-derivative thermogravimetry). SEM (scanning electron microscope) was used for surface analysis. The thermal stability of the synthesized blend polymers was higher than their homopolymers. Structural characterizations and surface analyzes support the successful performance of the synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2015) Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem Rev 116:1637–1669

    Article  PubMed  CAS  Google Scholar 

  2. Gutiérrez SM, Vacche SD, Vitale A, Ladmiral V, Caillol S, Bongiovanni R, Desmazes PL (2020) Photoinduced polymerization of eugenol-derived methacrylates. Molecules 25:3444

    Article  CAS  Google Scholar 

  3. Crivello JV, Reichmanis E (2013) Photopolymer materials and processes for advanced technologies. Chem Mater 26:533–548

    Article  CAS  Google Scholar 

  4. Olad A, Bastanian M, Aber S, Zebhi H (2021) Ion-crosslinked carboxymethyl cellulose/polyaniline bio-conducting interpenetrated polymer network: preparation, characterization and application for an efficient removal of Cr(VI) from aqueous solution. Iran Polym J 30:105–119

    Article  CAS  Google Scholar 

  5. Fix W, Ullmann A, Ficker J, Clemens W (2002) Fast polymer integrated circuits. Appl Phys Lett 81:1735–1737

    Article  CAS  Google Scholar 

  6. Boodhoo KVK, Dunk WAE, Jassim MS, Jachuck RJ (2004) Thin film solvent-free photopolymerization of n-butyl acrylate. I. Static film studies. J Appl Polym Sci 91:2079–2095

    Article  CAS  Google Scholar 

  7. Banerji A, Jin K, Liu K, Mahanthappa MK, Ellison CJ (2019) Cross-linked nonwoven fibers by room temperature cure blowing and in situ photopolymerization. Macromolecules 52:6662–6672

    Article  CAS  Google Scholar 

  8. Stansbuty JW (2000) Curing dental resins and composites by photopolymerization. J Esthet Restor Dent 12:300–308

    Article  Google Scholar 

  9. Lloret T, Navarro-Fuster V, Ramírez MG, Ortuño M, Neipp C, Belendez A, Pascual I (2018) Holographic lenses in an environment-friendly photopolymer. Polymers 10:302

    Article  PubMed Central  CAS  Google Scholar 

  10. Childs A, Li H, Lewittes DM, Dong B, Liu W, Shu X, Sun C, Zhang HF (2016) Fabricating customized hydrogel contact lens. Sci Rep 6:34905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang G, Zhao G, Zhang L, Mu Y, Park CB (2018) Lightweight and tough nanocellular PP/PTFE nanocomposite foams with defect-free surfaces obtained using in situ nanofibrillation and nanocellular injection molding. Chem Eng J 350:1–11

    Article  CAS  Google Scholar 

  12. Fang H, Jiang F, Wu Q, Ding Y, Wang Z (2014) Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer. ACS Appl Mater Interfaces 6:13552–13563

    Article  CAS  PubMed  Google Scholar 

  13. Hashim A, Hadi Q (2018) Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J Mater Sci Mater Electron 29:11598–11604

    Article  CAS  Google Scholar 

  14. Kong X, Liu X, Li J, Yang Y (2014) Advances in pharmacological research of eugenol. Curr Opin Complem Altern Med 1:8–11

    Google Scholar 

  15. Da Silva FFM, Monte FJ, Lemos TLG, Nascimento PGGD, Costa AKDM, Paiva LMM (2018) Eugenol derivatives: synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chem Cent J 12:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Modjinou T, Versace DL, Abbad-Andallousi S, Bousserrhine N, Dubot P, Langlois V, Renard E (2016) Antibacterial and antioxidant bio-based networks derived from eugenol using photo-activated thiol-enereaction. React Funct Polym 101:47–53

    Article  CAS  Google Scholar 

  17. Lartigue-Peyrou F (1996) The use of phenolic compounds as free-radical polymerization inhibitors. In: Desmurs JR, Ratton S (eds) The roots of organic development. Elsevier, Amsterdam

  18. Fujisawa S, Kadoma Y (1997) Action of eugenol as a retarder against polymerization of methyl methacrylate by benzoyl peroxide. Biomaterials 18:701–703

    Article  CAS  PubMed  Google Scholar 

  19. Anda AR, Sotta P, Modjinou T, Langlois V, Versace DL, Renard E (2020) Multiscale structural characterization of biobased diallyl–eugenol polymer networks. Macromolecules 53:2187–2197

    Article  CAS  Google Scholar 

  20. Liu T, Sun L, Ou R, Fan Q, Li L, Guo C, Liu Z, Wang Q (2019) Flame retardant eugenol-based thiol-ene polymer networks with high mechanical strength and transparency. Chem Eng J 368:359–368

    Article  CAS  Google Scholar 

  21. Strein TG, Ewing AG (1992) Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer. Anal Chem 64:1368–1373

    Article  CAS  Google Scholar 

  22. Culbertson BM, Post LK, Aulabaugh AE (1983) Polymers derived from allylphenol or substituted allylphenol and maleic anhydride. United States Patent 4:388–451

    Google Scholar 

  23. Yildiz M, Alp S, Saltan F, Akat H (2020) Synthesis of new imidazole-based monomer and copolymerization studies with methyl methacrylate. Iran Polym J 29:515–523

    Article  CAS  Google Scholar 

  24. Vitale A, Hennessy MG, Matar OK, Cabral JT (2015) A unified approach for patterning via frontal photopolymerization. Adv Mater 27:6118–6124

    Article  CAS  PubMed  Google Scholar 

  25. Batibay GS, Gunkara OT, Ocal N, Arsu N (2020) Thioxanthone attached polyhedral oligomeric silsesquioxane (POSS) nano-photoinitiator for preparation of PMMA hybrid networks in air atmosphere. Prog Org Coat 149:105939

    Article  CAS  Google Scholar 

  26. Liu S, Gleeson MR, Guo J, Sheridan JT, Tolstik E (2011) Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material. J Opt Soc Am B 28:2833–2843

    Article  CAS  Google Scholar 

  27. Jacob J, Lawal U, Thomas S, Valapa RB (2020) Biobased polymer composite from poly(lactic acid): processing, fabrication, and characterization for food packaging. In: Zhang Y (ed) Processing and development of polysaccharide-based biopolymers for packaging applications. Elsevier, Amsterdam

  28. Domínguez-Robles J, Martin NK, Fong ML, Stewart SA, Irwin NJ, Rial-Hermida MI, Donnelly RF, Larraneta E (2019) Antioxidant PLA composites containing lignin for 3D printing applications: a potential material for healthcare applications. Pharmaceutics 11:165

    Article  PubMed Central  CAS  Google Scholar 

  29. Robeson LM (2010) Polymer blends in membrane transport processes. Ind Eng Chem Res 49:11859–11865

    Article  CAS  Google Scholar 

  30. Serranti S, Luciani V, Bonifazi G, Hu B, Rem PC (2015) An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste Manag 35:12–20

    Article  CAS  PubMed  Google Scholar 

  31. Madhoushi M, Malakani A, Ebrahimi G, Rashidi A (2020) Mechanical properties of natural fiber/polypropylene, foamed and reinforced with spherical carbon nanoparticles for application in automotive industry. J For Wood Prod 70:177–187

    Google Scholar 

  32. Vijayakumaria G, Selvakumara N, Jeyasubramaniana K, Mala R (2013) Investigation on the electrical properties of polymer metal nanocomposites for physiological sensing applications. Phys Proc 49:67–78

    Article  CAS  Google Scholar 

  33. Djunaidi MC, Astuti TN, Siahaan P (2019) Computational approach to evaluate eugenol affinity computational approach to evaluate eugenol affinity and derivatives empirical against Cu(II). Molekul 14:149–156

    Article  CAS  Google Scholar 

  34. Gopanna A, Mandapati RN, Thomas SP, Rajan K, Chavali M (2019) Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and wide-angle X-ray scattering (WAXS) of polypropylene (PP)/cyclic olefin copolymer (COC) blends for qualitative and quantitative analysis. Polym Bull 76:4259–4274

    Article  CAS  Google Scholar 

  35. Souza BR, Di Benedetto RM, Hirayama D, Raponi OA, Barbosa LCM, Ancelotti AC (2017) Manufacturing and characterization of jute/PP thermoplastic commingled composite. Mater Res 20:458–465

    Article  Google Scholar 

  36. Ulu A, Köytepe S, Ateş B (2016) Synthesis and characterization of PMMA composites activated with starch for immobilization of l-asparaginase. J Appl Polym Sci 133:43421

    Article  CAS  Google Scholar 

  37. Al-Odayni AB, Saeed WS, Ahmed AYBH, Alrahlah A, Al-Kahtani A, Aouak T (2020) New monomer based on eugenol methacrylate, synthesis, polymerization and copolymerization with methyl methacrylate–characterization and thermal properties. Polymers 12:160–188

    Article  CAS  PubMed Central  Google Scholar 

  38. Wang K, Li T, Xie S, Wu X, Huang W, Tian Q, Tu C, Yan W (2019) Influence of organo-sepiolite on the morphological, mechanical, and rheological properties of PP/ABS blends. Polymers 11:1493–1504

    Article  CAS  PubMed Central  Google Scholar 

  39. Ramasamy R, Yanga K, Rafailovich MH (2014) Polypropylene–graphene—a nanocomposite that can be converted into a meta-material at desired frequencies. RSC Adv 4:44888–44895

    Article  CAS  Google Scholar 

  40. Nenkova S, Cv D, Natov M, St V, Velev P (2005) Modification of wood flour with maleic anhydride for manufacture of wood-polymer composites. Polym Polym Compos 14:185–194

    Google Scholar 

  41. Simoes MG, Coimbra P, Carreira AS, Figueiredo MM, Gil MH, Simoes PN (2020) Eugenol-loaded microspheres incorporated into textile substrates. Cellulose 27:4109–4121

    Article  CAS  Google Scholar 

  42. Xu H, Zhang D, Li J (2019) Antibacterial nanoparticles with universal adhesion function based on dopamine and eugenol. J Bioresour Bioprod 4:177–182

    CAS  Google Scholar 

  43. Jiang W, Sun Y, Xu Y, Peng C, Gong X, Zhang Z (2010) Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine–water mixtures. Rheol Acta 49:1157–1163

    Article  CAS  Google Scholar 

  44. Marti M, Frigols B, Serrano-Aroca A (2018) Antimicrobial characterization of advanced materials for bioengineering applications. J Vis Exp 138:1–10

    Google Scholar 

Download references

Acknowledgements

This study was supported by Çankırı Karatekin University Scientific Research Projects Coordination Unit with Project number FF080120B01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fehmi Saltan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saltan, F. Preparation of poly(eugenol-co-methyl methacrylate)/polypropylene blend by creative route approach: structural and thermal characterization. Iran Polym J 30, 1227–1236 (2021). https://doi.org/10.1007/s13726-021-00965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00965-2

Keywords

Navigation