Skip to main content
Log in

A Dichotomy for the Weierstrass-type functions

  • Published:
Inventiones mathematicae Aims and scope

Abstract

For a real analytic periodic function \(\phi :\mathbb {R}\rightarrow \mathbb {R}\), an integer \(b\ge 2\) and \(\lambda \in (1/b,1)\), we prove the following dichotomy for the Weierstrass-type function \(W(x)=\sum \nolimits _{n\ge 0}{{\lambda }^n\phi (b^nx)}\): Either W(x) is real analytic, or the Hausdorff dimension of its graph is equal to \(2+\log _b\lambda \). Furthermore, given b and \(\phi \), the former alternative only happens for finitely many \(\lambda \) unless \(\phi \) is constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barański, K.: On the dimension of graphs of Weierstrass-type functions with rapidly growing frequencies. Nonlinearity 25(1), 193–209 (2012)

    Article  MathSciNet  Google Scholar 

  2. Barański, K.: Dimension of the graphs of the Weierstrass type functions. Fractal Geometry and Stochastics V, 77–91, Progr. Probab. 70, Birkhäuser/Springer, Cham (2015)

  3. Barański, K., Bárány, B., Romanowska, J.: On the dimension of the graph of the classical Weierstrass function. Adv. Math. 265, 32–59 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bárány, B., Hochman, M., Rapaport, A.: Hausdorff dimension of planar self-affine sets and measures. Invent. Math. 216(3), 601–659 (2019)

    Article  MathSciNet  Google Scholar 

  5. Besicovitch, A.S., Ursell, H.D.: Sets of fractional dimensions (v): on dimensional numbers of some continuous curves. J. Lond. Math. Soc. 1(1), 18–25 (1937)

    Article  Google Scholar 

  6. Bishop, C., Peres, Y.: Fractals in Probability and Analysis. Cambridge Studies in Advanced Mathematics, vol. 162 (2017)

  7. Erdös, P.: On the smooth properties of a family of Bernoulli convolutions. Am. J. Math. 62, 180–186 (1940)

    Article  Google Scholar 

  8. Falconer, K.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  9. Fan, A.H., Lau, K.S., Rao, H.: Relationships between different dimensions of a measure. Monatsh. Math 135(3), 191–201 (2002)

    Article  MathSciNet  Google Scholar 

  10. Hardy, G.H.: Weierstrass non-differentiable function. Trans. Am. Math. Soc. 17(3), 301–325 (1916)

    MathSciNet  MATH  Google Scholar 

  11. Heurteaux, Y.: Weierstrass functions with random phases. Trans. Am. Math. Soc. 355(8), 3065–3077 (2003)

    Article  MathSciNet  Google Scholar 

  12. Hochman, M.: On self-similar sets with overlaps and inverse theorems for entropy. Ann. Math. 180(2), 773–822 (2014)

    Article  MathSciNet  Google Scholar 

  13. Hu, T.Y., Lau, K.S.: Fractal dimensions and singularities of the Weierstrass type functions. Trans. Am. Math. Soc. 335(2), 649–665 (1993)

    Article  MathSciNet  Google Scholar 

  14. Hunt, B.R.: The Hausdorff dimension of graphs of Weierstrass functions. Proc. Am. Math. Soc. 126(3), 791–800 (1998)

    Article  MathSciNet  Google Scholar 

  15. Kaplan, J.L., Mallet-Paret, J., Yorke, J.A.: The Lyapunov dimension of a nowhere differentiable attracting torus. Ergod. Theory Dyn. Syst. 4(2), 261–281 (1984)

    Article  MathSciNet  Google Scholar 

  16. Keller, G.: An elementary proof for the dimension of the graph of the classical Weierstrass function. Ann. Inst. Henri Poincaré Probab. Stat. 53, 169–181 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ledrappier, F.: On the dimension of some graphs. Contemp. Math. 135, 285–293 (1992)

    Article  MathSciNet  Google Scholar 

  18. Ledrappier, F., Young, L.S.: The metric entropy of diffeomorphisms: Part ii: relations between entropy, exponents and dimension. Ann. Math. 122(3), 540–574 (1985)

    Article  MathSciNet  Google Scholar 

  19. Mandelbrot, B.: Fractals: Form, Chance, and Dimension. W. H. Freeman and Co., San Francisco (1977)

    MATH  Google Scholar 

  20. Mauldin, R.D., Williams, S.C.: On the Hausdorff dimension of some graphs. Trans. Am. Math. Soc. 298(2), 793–803 (1986)

    Article  MathSciNet  Google Scholar 

  21. Peres, Y., Solomyak, B.: Absolute continuity of Bernoulli convolutions, a simple proof. Math. Res. Lett. 3, 231–239 (1996)

    Article  MathSciNet  Google Scholar 

  22. Przytycki, F., Urbański, M.: On the Hausdoff dimension of some fractal sets. Studia Math. 93(2), 155–186 (1989)

    Article  MathSciNet  Google Scholar 

  23. Rezakhanlou, F.: The packing measure of the graphs and level sets of certain continuous functions. Math. Proc. Camb. Philos. Soc. 104(2), 347–360 (1988)

    Article  MathSciNet  Google Scholar 

  24. Romanowska, J.: Measure and Hausdorff dimension of randomized Weierstrass-type functions. Nonlinearity 27(4), 787–801 (2014)

    Article  MathSciNet  Google Scholar 

  25. Shen, W.: Hausdorff dimension of the graphs of the classical weierstrass functions. Math. Z. 289(1–2), 223–266 (2018)

    Article  MathSciNet  Google Scholar 

  26. Solomyak, B.: On the random series \(\sum \pm \lambda ^n\) (an Erdös problem). Ann. Math. 142, 611–625 (1995)

    Article  MathSciNet  Google Scholar 

  27. Tsujii, M.: Fat solenoidal attractors. Nonlinearity 14(5), 1011–1027 (2001)

    Article  MathSciNet  Google Scholar 

  28. Young, L.S.: Dimension, entropy and Lyapunov exponents. Ergod. Theory Dyn. Syst. 2(1), 109–124 (1982)

    Article  MathSciNet  Google Scholar 

  29. Zhang, N.: The Hausdorff dimension of the graphs of fractal functions. Master Thesis. Zhejiang University (2018) (in Chinese)

  30. Varjú, p: On the dimension of Bernoulli convolutions for all transcendental parameters. Ann. Math. 189(3), 1001–1011 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the participants of the dynamical systems seminar in the Shanghai Center for Mathematical Sciences, an in particular, Guohua Zhang for suggesting the name of regulating period. WS is supported by NSFC grant No. 11731003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixiao Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Shen, W. A Dichotomy for the Weierstrass-type functions. Invent. math. 226, 1057–1100 (2021). https://doi.org/10.1007/s00222-021-01060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-021-01060-2

Navigation