Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolutionary dynamics of the elevational diversity gradient in passerine birds

Abstract

Low-elevation regions harbour the majority of the world’s species diversity compared to high-elevation areas. This global gradient suggests that lowland species have had more time to diversify, or that net diversification rates have been higher in the lowlands. However, highlands seem to be cradles of diversity as they contain many young endemics, suggesting that their rates of speciation are exceptionally fast. Here we use a phylogenetic diversification model that accounts for the dispersal of species between different elevations to examine the evolutionary dynamics of the elevational diversity gradient in passerine birds, a group that has radiated globally to occupy almost all elevations and latitudes. We find strong support for a model in which passerines diversify at the same rate in the highlands and the lowlands but in which the per-capita rate of dispersal from high to low elevations is more than twice as fast as that in the reverse direction. This suggests that while there is no consistent trend in diversification across elevations, part of the diversity generated by highland regions migrates into the lowlands, thus setting up the observed gradient in passerine diversity. We find that this process drives tropical regions but for temperate areas, the analysis could be hampered by their lower richness. Despite their lower diversity, highland regions are disproportionally important for maintaining diversity in the adjacent lowlands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The global EDG in passerine birds.
Fig. 2: The dynamics of the EDG are modelled by allowing rates of diversification to vary across the elevational states of species and by allowing transitions between different elevational states over time.

Similar content being viewed by others

Data availability

No datasets were generated during the current study. The data analysed were collected from previous reports27,49. The necessary files to replicate our study are available at figshare: https://doi.org/10.6084/m9.figshare.14750652.

Code availability

We used R packages for analysing data. They are all available at CRAN: caper, phyloregion, DDD and secsse. The R code that we used to set up models, import data and analyse the output is available at figshare: https://doi.org/10.6084/m9.figshare.14750652.

References

  1. Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).

    Article  Google Scholar 

  2. McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).

    Google Scholar 

  3. Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Wiens, J. J., Parra-Olea, G., García-París, M. & Wake, D. B. Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders. Proc. R. Soc. B 274, 919–928 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B 283, 20152013 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Körner, C. & Spehn, E. M. (eds) Mountain Biodiversity: A Global Assessment (CRC Press, 2002).

  9. Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Fjeldsa, J. Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities. Biodivers. Conserv. 3, 207–226 (1994).

    Article  Google Scholar 

  11. Jetz, W., Rahbek, C. & Colwell, R. K. The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecol. Lett. 7, 1180–1191 (2004).

    Article  Google Scholar 

  12. Weir, J. T. Divergent timing and patterns of species accumulation in lowland and highland Neotropical birds. Evolution 60, 842–855 (2006).

    Article  PubMed  Google Scholar 

  13. Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. USA 103, 10334–10339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cozzarolo, C.-S. et al. Biogeography and ecological diversification of a mayfly clade in New Guinea.Front. Ecol. Evol. 7, 233 (2019).

    Article  Google Scholar 

  15. Davies, T. J., Savolainen, V., Chase, M. W., Moat, J. & Barracloug, T. G. Environmental energy and evolutionary rates in flowering plants. Proc. R. Soc. B 271, 2195–2200 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Graves, G. R. Linearity of geographic range and its possible effect on the population structure of andean birds. Auk 105, 47–52 (1988).

    Article  Google Scholar 

  17. Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  18. Cai, T. et al. What makes the Sino-Himalayan mountains the major diversity hotspots for pheasants? J. Biogeogr. 45, 640–651 (2018).

    Article  Google Scholar 

  19. Rana, S. K., Gross, K. & Price, T. D. Drivers of elevational richness peaks, evaluated for trees in the east Himalaya. Ecology 100, e02548 (2019).

    Article  PubMed  Google Scholar 

  20. Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114–1119 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Ribas, C. C., Moyle, R. G., Miyaki, C. Y. & Cracraft, J. The assembly of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proc. R. Soc. B 274, 2399–2408 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schwery, O. et al. As old as the mountains: the radiations of the Ericaceae. N. Phytologist 207, 355–367 (2015).

    Article  Google Scholar 

  23. Bates, J. M. & Zink, R. M. Evolution into the Andes: molecular evidence for species relationships in the genus Leptopogon. Auk 111, 507–515 (1994).

    Google Scholar 

  24. Roy, M. S. Recent diversification in African greenbuls (Pycnonotidae: Andropadus) supports a montane speciation model. Proc. R. Soc. B 264, 1337–1344 (1997).

    Article  PubMed Central  Google Scholar 

  25. Garcia-Moreno, J. et al. Pre-Pleistocene differentiation among chat-tyrants. Condor 100, 629–640 (1998).

    Article  Google Scholar 

  26. Oliveros, C. H. et al. Earth history and the passerine superradiation. Proc. Natl Acad. Sci. USA 116, 7916–7925 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).

    Article  Google Scholar 

  29. Herrera-Alsina, L., van Els, P. & Etienne, R. S. Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst. Biol. 68, 317–328 (2019).

    Article  PubMed  Google Scholar 

  30. Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Derryberry, E. P. et al. Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65, 2973–2986 (2011).

    Article  PubMed  Google Scholar 

  32. Fjeldså, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).

    Article  Google Scholar 

  33. Chazot, N. et al. Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Mol. Ecol. 25, 5765–5784 (2016).

    Article  PubMed  Google Scholar 

  34. Elias, M. et al. Out of the Andes: oatterns of diversification in clearwing butterflies. Mol. Ecol. 18, 1716–1729 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. McGuire, J. A., Witt, C. C., Altshuler, D. L. & Remsen, J. V. Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. Syst. Biol. 56, 837–856 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Brumfield, R. T. & Edwards, S. V. Evolution into and out of the Andes: a Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution 61, 346–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Zhou, C. et al. Genome-wide analysis sheds light on the high-altitude adaptation of the buff-throated partridge (Tetraophasis szechenyii). Mol. Genet. Genom. 295, 31–46 (2020).

    Article  CAS  Google Scholar 

  38. Xu, Z., He, J. & Wang, J. Hypoxia affects the resistance of Scylla paramamosain to Vibrio alginolyticus via changes of energy metabolism. Aquac. Rep. 19, 100565 (2021).

    Article  Google Scholar 

  39. Storz, J. F., Scott, G. R. & Cheviron, Z. A. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J. Exp. Biol. 213, 4125–4136 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Scott, G. R. Elevated performance: the unique physiology of birds that fly at high altitudes. J. Exp. Biol. 214, 2455–2462 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Projecto-Garcia, J. et al. Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds. Proc. Natl Acad. Sci. USA 110, 20669–20674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scott, G. R. et al. Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose. Mol. Biol. Evol. 28, 351–363 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Schumm, M., White, A. E., Supriya, K. & Price, T. D. Ecological limits as the driver of bird species richness patterns along the east Himalayan elevational gradient. Am. Nat. 195, 802–817 (2020).

    Article  PubMed  Google Scholar 

  44. Malpica, A., Covarrubias, S., Villegas-Patraca, R. & Herrera-Alsina, L. Ecomorphological structure of avian communities changes upon arrival of wintering species. Basic Appl. Ecol. 24, 60–67 (2017).

    Article  Google Scholar 

  45. Etienne, R. S. et al. A minimal model for the latitudinal diversity gradient suggests a dominant role for ecological limits. Am. Nat. 194, E122–E133 (2019).

    Article  PubMed  Google Scholar 

  46. Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Braun, E. L., Cracraft, J. & Houde, P. in Avian Genomics in Ecology and Evolution (ed. Kraus, R. H. S.) 151–210 (Springer, 2019).

  49. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & Kirwan, G. Handbook of the Birds of the World (Lynx Edicions, 2016).

  50. Chapman, F. M. et al. The distribution of bird life in Ecuador: a contribution to a study of the origin of Andean bird-life. Bull. Am. Mus. Nat. Hist. 55, 1–784 (1926).

    Google Scholar 

  51. Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).

    Article  PubMed  Google Scholar 

  52. Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    Article  PubMed  Google Scholar 

  53. Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Daru, B., Karunarathne, P. & Schliep, K. phyloregion: R package for biogeographic regionalization and spatial conservation. Methods Ecol. Evol. 11, 1483–1491 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The research of P.v.E. was facilitated by the Adaptive Life Program of the Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering at the University of Groningen. L.H.-A. thanks the Consejo Nacional de Ciencia y Tecnología of Mexico for funding (CVU 385304 L). R.S.E. thanks the Netherlands Organization for Scientific Research (NWO) for financial support through a VICI grant. A.L.P. is funded by a Royal Society University Research Fellowship. We thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high-performance computing cluster.

Author information

Authors and Affiliations

Authors

Contributions

P.v.E. collected data. L.H.-A. and P.v.E. performed the analysis. R.S.E. and A.L.P. supervised the project. L.H.-A., P.v.E., A.L.P. and R.S.E. wrote the manuscript.

Corresponding author

Correspondence to Leonel Herrera-Alsina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Els, P., Herrera-Alsina, L., Pigot, A.L. et al. Evolutionary dynamics of the elevational diversity gradient in passerine birds. Nat Ecol Evol 5, 1259–1265 (2021). https://doi.org/10.1038/s41559-021-01515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01515-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing