Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unusual zymogen activation patterns in the protein corona of Ca-zeolites

Abstract

Zymogen (prothrombin) activation is central to the process of haemostasis (blood clotting) in the body, preventing serious blood loss and death from haemorrhagic shock. Zeolites comprise a family of crystalline microporous aluminosilicates that show increasing promise for use in massive bleeding control. However, the mechanism of zeolite-initiated haemostasis has remained unclear. Here, we investigate zeolite-initiated thrombin activation at the molecular level, and show that a prothrombinase complex can assemble on the inorganic surface of calcium-ion-exchanged zeolites (Ca-zeolites). Compared to natural platelet-based physiological processes, prothrombin-to-thrombin conversion on the surface of Ca-zeolite displays a striking thrombin activation pattern, with an exceptionally high plateau thrombin activity and at least 12-fold enhanced endogenous thrombin. The results provide a mechanistic understanding of how the zeolite surface functionally contributes to thrombin activation, paving the way towards the design of improved agents for bleeding management.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and isolation of the HPC.
Fig. 2: Protein analysis.
Fig. 3: Dynamic process of prothrombinase complex (factors X and V) assembly on the zeolite surface.
Fig. 4: Activation of prothrombin to thrombin by HPC/Zeo.
Fig. 5: Evaluation of thrombin initiated by zeolite.
Fig. 6: The unique conformation and enhanced activity of thrombin on zeolite.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article and its Supplementary Information or from the corresponding authors upon reasonable request. The MS proteomics data have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier PXD024170. Source data are provided with this paper.

References

  1. Neurath, H. Evolution of proteolytic enzymes. Science 224, 350–357 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Neurath, H. & Walsh, K. A. Role of proteolytic enzymes in biological regulation (a review). Proc. Natl Acad. Sci. USA 73, 3825–3832 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolberg, A. S. & Campbell, R. A. Thrombin generation, fibrin clot formation and hemostasis. Transfus. Apher. Sci. 38, 15–23 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Monroe, D. M., Hoffman, M. & Roberts, H. R. Platelets and thrombin generation. Arterioscler. Thromb. Vasc. Biol. 22, 1381–1389 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Wolberg, A. S. Thrombin generation and fibrin clot structure. Blood Rev. 21, 131–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Monroe, D. M. & Hoffman, M. What does it take to make the perfect clot? Arterioscler. Thromb. Vasc. Biol. 26, 41–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Hickman, D. A., Pawlowski, C. L., Sekhon, U. D., Marks, J. & Gupta, A. S. Biomaterials and advanced technologies for hemostatic management of bleeding. Adv. Mater. 30, 1700859 (2018).

    Article  Google Scholar 

  8. Alam, H. B. et al. Application of a zeolite hemostatic agent achieves 100% survival in a lethal model of complex groin injury in swine. J. Trauma Acute Care Surg. 56, 974–983 (2004).

    Article  CAS  Google Scholar 

  9. Kheirabadi, B. S., Scherer, M. R., Estep, J. S., Dubick, M. A. & Holcomb, J. B. Determination of efficacy of new hemostatic dressings in a model of extremity arterial hemorrhage in swine. J. Trauma Acute Care Surg. 67, 450–460 (2009).

    Article  CAS  Google Scholar 

  10. Gruen, R. L. et al. Haemorrhage control in severely injured patients. Lancet 380, 1099–1108 (2012).

    Article  PubMed  Google Scholar 

  11. Achneck, H. E. et al. A comprehensive review of topical hemostatic agents: efficacy and recommendations for use. Ann. Surg. 251, 217–228 (2010).

    Article  PubMed  Google Scholar 

  12. Gordy, S. D., Rhee, P. & Schreiber, M. A. Military applications of novel hemostatic devices. Expert Rev. Med. Devices 8, 41–47 (2011).

    Article  PubMed  Google Scholar 

  13. Pourshahrestani, S., Zeimaran, E., Djordjevic, I., Kadri, N. A. & Towler, M. R. Inorganic hemostats: the state-of-the-art and recent advances. Mater. Sci. Eng. C 58, 1255–1268 (2016).

    Article  CAS  Google Scholar 

  14. Yu, L. et al. A tightly-bonded and flexible mesoporous zeolite–cotton hybrid hemostat. Nat. Commun. 10, 1932 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Granville-Chapman, J., Jacobs, N. & Midwinter, M. Pre-hospital haemostatic dressings: a systematic review. Injury 42, 447–459 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Y. et al. In situ generated thrombin in the protein corona of zeolites: relevance of the functional proteins to its biological impact. Nano Res. 7, 1457–1465 (2014).

    Article  CAS  Google Scholar 

  17. Tenzer, S. et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5, 7155–7167 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Walkey, C. D. & Chan, W. C. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41, 2780–2799 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Cedervall, T. et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Caracciolo, G. et al. Stealth effect of biomolecular corona on nanoparticle uptake by immune cells. Langmuir 31, 10764–10773 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Dobrovolskaia, M. A. & McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2, 469–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Kelly, P. M. et al. Mapping protein binding sites on the biomolecular corona of nanoparticles. Nat. Nanotechnol. 10, 472–479 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Dawson, K. A. & Yan, Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol. 16, 229–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Jain, P. et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine: is protein corona the missing link? Biotechnol. Adv. 35, 889–904 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Monopoli, M. P. et al. Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525–2534 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Winzen, S. et al. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale 7, 2992–3001 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Spahn, D. R. et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit. Care 17, R76 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chapin, J. C. & Hajjar, K. A. Fibrinolysis and the control of blood coagulation. Blood Rev. 29, 17–24 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Foley, J. H. Plasmin(ogen) at the nexus of fibrinolysis, inflammation and complement. Semin. Thromb. Hemost. 43, 135–142 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Laurent, S. et al. Corona protein composition and cytotoxicity evaluation of ultra-small zeolites synthesized from template free precursor suspensions. Toxicol. Res. 2, 270–279 (2013).

    Article  CAS  Google Scholar 

  32. Rahimi, M. et al. Zeolite nanoparticles for selective sorption of plasma proteins. Sci. Rep. 5, 17259 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krishnaswamy, S. The transition of prothrombin to thrombin. J. Thromb. Haemost. 11, 265–276 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ivanciu, L., Krishnaswamy, S. & Camire, R. M. New insights into the spatiotemporal localization of prothrombinase in vivo. Blood 124, 1705–1714 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crawley, J., Zanardelli, S., Chion, C. & Lane, D. The central role of thrombin in hemostasis. J. Thromb. Haemost. 5, 95–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Allen, G. A. et al. Impact of procoagulant concentration on rate, peak and total thrombin generation in a model system. J. Thromb. Haemost. 2, 402–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Lane, D. A., Philippou, H. & Huntington, J. A. Directing thrombin. Blood 106, 2605–2612 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Tomaiuolo, M., Brass, L. F. & Stalker, T. J. Regulation of platelet activation and coagulation and its role in vascular injury and arterial thrombosis. Interv. Cardiol. Clin. 6, 1–12 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Wilf, J., Gladner, J. A. & Minton, A. P. Acceleration of fibrin gel formation by unrelated proteins. Thromb. Res. 37, 681–688 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. Torbet, J. Fibrin assembly in human plasma and fibrinogen/albumin mixtures. Biochemistry 25, 5309–5314 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. Daniel, R. M., Dunn, R. V., Finney, J. L. & Smith, J. C. The role of dynamics in enzyme activity. Annu. Rev. Biophys. Biomol. Struct. 32, 69–92 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, Y. et al. Probing the lysine proximal microenvironments within membrane protein complexes by active dimethyl labeling and mass spectrometry. Anal. Chem. 88, 12060–12065 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Huntington, J. Molecular recognition mechanisms of thrombin. J. Thromb. Haemost. 3, 1861–1872 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Ricci, C. G., Pinto, A. F. M., Berger, M. & Termignoni, C. A thrombin inhibitor from the gut of Boophilus microplus ticks. Exp. Appl. Acarol. 42, 291–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Hursey, F. X. & Dechene, F. J. Method of treating wounds. US patent 4,822,349 (1989).

  46. Ostomel, T. A., Stoimenov, P. K., Holden, P. A., Alam, H. B. & Stucky, G. D. Host–guest composites for induced hemostasis and therapeutic healing in traumatic injuries. J. Thromb. Thrombolysis 22, 55–67 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Sloan, I. G. & Firkin, B. G. Effects of EACA on thrombin generation as measured by the chromagen S2238. Thromb. Res. 44, 761–769 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.F. acknowledges support from the National Natural Science Foundation of China (91545113, 91845203 and 92045301), China Postdoctoral Science Foundation (2017M610363 and 2018T110584), Shell Global Solutions International BV (PT71423 and PT74557), Fok Ying Tong Education Foundation (131015) and the Science & Technology Program of Ningbo (2017C50014). K.A.D. acknowledges that this publication has emanated from research supported in part by grants from Science Foundation Ireland (17/NSFC/4898 and 17/ERCD/4962) and also from funding under Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment (2019KSYS008). V.C. acknowledges support from the Irish Research Council (GOIPD/2016/128). L.B. acknowledges financial support from the EU H2020 Nanofacturing project (grant agreement no. 646364). V.P. acknowledges financial support from CALIN. We thank Q. Gao for helping with proteomic analysis and protein structure analysis.

Author information

Authors and Affiliations

Authors

Contributions

J.F. and K.A.D. conceived the project. J.F., K.A.D., X.S. and H.C. designed the experiments and wrote the manuscript. X.S. and H.C. carried out the experiments and data analysis. K.L., V.C., L.B. and V.P. helped with the protein corona MS analysis. M.H. and F.W. helped with the protein conformation analysis. L.X. and L.Y. helped with revision of the manuscript. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Kenneth A. Dawson or Jie Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Russell Morris, Ivan D Tarandovskiy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Methods, Tables 1–7 and Additional Supplementary Fig. 1.

Reporting Summary

Supplementary Data 1

Statistical source data for Supplementary Figs. 2, 3, 6, 8, 9 and 11.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 5

Unprocessed western blots.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, X., Chen, H., Castagnola, V. et al. Unusual zymogen activation patterns in the protein corona of Ca-zeolites. Nat Catal 4, 607–614 (2021). https://doi.org/10.1038/s41929-021-00654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00654-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research