Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T10:08:06.775Z Has data issue: false hasContentIssue false

Drop impact on solids: contact-angle hysteresis filters impact energy into modal vibrations

Published online by Cambridge University Press:  21 July 2021

Vanessa R. Kern*
Affiliation:
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY14850, USA
Joshua B. Bostwick
Affiliation:
Department of Mechanical Engineering, Clemson University, Clemson, SC29634, USA
Paul H. Steen
Affiliation:
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY14850, USA
*
Email address for correspondence: vrk24@cornell.edu

Abstract

The energetics of drop deposition are considered in the capillary-ballistic regime characterized by high Reynolds number and moderate Weber number. Experiments are performed impacting water/glycol drops onto substrates with varying wettability and contact-angle hysteresis. The impacting event is decomposed into three regimes: (i) pre-impact, (ii) inertial spreading and (iii) post contact-line (CL) pinning, conveniently framed using the theory of Dussan & Davis (J. Fluid Mech., vol. 173, 1986, pp. 115–130). During fast-time-scale inertial spreading, the only form of dissipation is CL dissipation ($\mathcal {D}_{CL}$). High-speed imaging is used to resolve the stick-slip dynamics of the CL with $\mathcal {D}_{CL}$ measured directly from experiment using the $\Delta \alpha$-$R$ cyclic diagram of Xia & Steen (J. Fluid Mech., vol. 841, 2018, pp. 767–783), representing the contact-angle deviation against the CL radius. Energy loss occurs on slip legs, and this observation is used to derive a closed-form expression for the kinetic K and interfacial $\mathcal{A}$ post-pinning energy $\{K+\mathcal {A}\}_p/\mathcal {A}_o$ independent of viscosity, only depending on the rest angle $\alpha _p$, equilibrium angle $\bar {\alpha }$ and hysteresis $\Delta \alpha$, which agrees well with experimental observation over a large range of parameters, and can be used to evaluate contact-line dissipation during inertial spreading. The post-pinning energy is found to be independent of the pre-impact energy, and it is broken into modal components with corresponding energy partitioning approximately constant for low-hysteresis surfaces with fixed pinning angle $\alpha _p$. During slow-time-scale post-pinning, the liquid/gas ($lg$) interface is found to vibrate with the frequencies and mode shapes predicted by Bostwick & Steen (J. Fluid Mech., vol. 760, 2014, pp. 5–38), irrespective of the pre-impact energy. Resonant mode decay rates are determined experimentally from fast Fourier transforms of the interface dynamics.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonini, C., Villa, F., Bernagozzi, I., Amirfazli, A. & Marengo, M. 2013 Drop rebound after impact: the role of the receding contact angle. Langmuir 29 (52), 1604516050.CrossRefGoogle ScholarPubMed
Bangham, D.H. & Razouk, R.I. 1937 Adsorption and the wettability of solid surfaces. Trans. Faraday Soc. 33, 14591463.CrossRefGoogle Scholar
Baudoin, M., Brunet, P., Bou Matar, O. & Herth, E. 2012 Low power sessile droplets actuation via modulated surface acoustic waves. Appl. Phys. Lett. 100 (15), 154102.CrossRefGoogle Scholar
Benilov, E.S. & Billingham, J. 2011 Drops climbing uphill on an oscillating substrate. J. Fluid. Mech. 674, 93.CrossRefGoogle Scholar
Bhushan, B., Jung, Y.C. & Nosonovsky, M. 2010 Lotus effect: surfaces with roughness-induced superhydrophobicity, self-cleaning, and low adhesion. In Springer Handbook of Nanotechnology (ed. B. Bhushan), pp. 1437–1524. Springer.CrossRefGoogle Scholar
Biance, A.-L., Clanet, C. & Quéré, D. 2004 First steps in the spreading of a liquid droplet. Phys. Rev. E 69 (1), 016301.CrossRefGoogle ScholarPubMed
Bird, J.C., Mandre, S. & Stone, H.A. 2008 Short-time dynamics of partial wetting. Phys. Rev. Lett. 100 (23), 234501.CrossRefGoogle ScholarPubMed
Bostwick, J.B. & Steen, P.H. 2009 Capillary oscillations of a constrained liquid drop. Phys. Fluids 21, 032108.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2013 a Coupled oscillations of deformable spherical-cap droplets. Part 1. Inviscid motions. J. Fluid Mech. 714, 312335.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2013 b Coupled oscillations of deformable spherical-cap droplets. Part 2. Viscous motions. J. Fluid Mech. 714, 336360.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2014 Dynamics of sessile drops. Part 1. Inviscid theory. J. Fluid Mech. 760, 538.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2016 Response of driven sessile drops with contact-line dissipation. Soft Matt. 12 (43), 89198926.CrossRefGoogle ScholarPubMed
Bradshaw, J. & Billingham, J. 2018 Thick drops climbing uphill on an oscillating substrate. J. Fluid Mech. 840, 131153.CrossRefGoogle Scholar
Brunet, P., Eggers, J. & Deegan, R.D. 2007 Vibration-induced climbing of drops. Phys. Rev. Lett. 99 (14), 144501.CrossRefGoogle ScholarPubMed
Brunet, P. & Snoeijer, J.H. 2011 Star-drops formed by periodic excitation and on an air cushion – a short review. Eur. Phys. J.: Spec. Top. 192 (1), 207226.Google Scholar
Carlson, A., Bellani, G. & Amberg, G. 2012 Contact line dissipation in short-time dynamic wetting. Europhys. Lett. 97 (4), 44004.CrossRefGoogle Scholar
Chang, C.-T., Bostwick, J.B., Daniel, S. & Steen, P.H. 2015 Dynamics of sessile drops. Part 2. Experiment. J. Fluid Mech. 768, 442467.CrossRefGoogle Scholar
Chang, C.-T., Bostwick, J.B., Steen, P.H. & Daniel, S. 2013 Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops. Phys. Rev. E 88 (2), 023015.CrossRefGoogle ScholarPubMed
Cheng, L. 1977 Dynamic spreading of drops impacting onto a solid surface. Ind. Engng Chem. Proc. Des. Dev. 16 (2), 192197.CrossRefGoogle Scholar
Comiskey, P.M., Yarin, A.L., Kim, S. & Attinger, D. 2016 Prediction of blood back spatter from a gunshot in bloodstain pattern analysis. Phys. Rev. Fluids 1 (4), 043201.CrossRefGoogle Scholar
Courbin, L., Bird, J.C., Reyssat, M. & Stone, H.A. 2009 Dynamics of wetting: from inertial spreading to viscous imbibition. J. Phys.: Condens. Matter 21 (46), 464127.Google ScholarPubMed
Cox, R.G. 1998 Inertial and viscous effects on dynamic contact angles. J. Fluid Mech. 357, 249278.CrossRefGoogle Scholar
Dalili, A., Sidawi, K. & Chandra, S. 2020 Surface coverage by impact of droplets from a monodisperse spray. J. Coat. Technol. Res. 17 (1), 207217.CrossRefGoogle Scholar
van Dam, D.B. & Le Clerc, C. 2004 Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys. Fluids 16 (9), 34033414.CrossRefGoogle Scholar
Deepu, P., Basu, S. & Kumar, R. 2014 Multimodal shape oscillations of droplets excited by an air stream. Chem. Engng Sci. 114, 8593.CrossRefGoogle Scholar
Delele, M.A., Nuyttens, D., Duga, A.T., Ambaw, A., Lebeau, F., Nicolai, B.M. & Verboven, P. 2016 Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces. Soft Matt. 12 (34), 71957211.CrossRefGoogle ScholarPubMed
Ding, H. & Spelt, P.D.M. 2007 Inertial effects in droplet spreading: a comparison between diffuse-interface and level-set simulations. J. Fluid Mech. 576, 287296.CrossRefGoogle Scholar
Dussan, E.B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid. Mech. 11 (1), 371400.CrossRefGoogle Scholar
Dussan, E.B. & Davis, S.H. 1986 Stability in systems with moving contact lines. J. Fluid Mech. 173, 115130.CrossRefGoogle Scholar
Gelderblom, H., Visser, C.W., Sun, C. & Lohse, D. 2017 Drop impact on solid substrates: bubble entrapment and spreading dynamics. Soft Interfaces 98 (2012), 147165.Google Scholar
de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2004 Capillarity and gravity. In Capillarity and Wetting Phenomena, pp. 33–67. Springer.CrossRefGoogle Scholar
Gordillo, J.M., Riboux, G. & Quintero, E.S. 2019 A theory on the spreading of impacting droplets. J. Fluid Mech. 866, 298315.CrossRefGoogle Scholar
Haverinen, H.M., Myllyla, R.A. & Jabbour, G.E. 2010 Inkjet printed RGB quantum dot-hybrid LED. J. Display Technol. 6 (3), 8789.CrossRefGoogle Scholar
Horibe, A., Fukusako, S. & Yamada, M. 1996 Surface tension of low-temperature aqueous solutions. Intl J. Thermophys. 17 (2), 483493.CrossRefGoogle Scholar
Josserand, C. & Thoroddsen, S.T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid. Mech. 48, 365391.CrossRefGoogle Scholar
Kang, B., Lee, W.H. & Cho, K. 2013 Recent advances in organic transistor printing processes. ACS Appl. Mater. Interfaces 5 (7), 23022315.CrossRefGoogle ScholarPubMed
Karunakaran, S.K., Arumugam, G.M., Yang, W., Ge, S., Khan, S.N., Lin, X. & Yang, G. 2019 Recent progress in inkjet-printed solar cells. J. Mater. Chem. A 7 (23), 1387313902.CrossRefGoogle Scholar
Kim, B.H., et al. 2015 High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 15 (2), 969973.CrossRefGoogle ScholarPubMed
Kolinski, J.M., Mahadevan, L. & Rubinstein, S.M. 2014 Drops can bounce from perfectly hydrophilic surfaces. Europhys. Lett. 108 (2), 24001.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Legendre, D. & Maglio, M. 2013 Numerical simulation of spreading drops. Colloids Surf. A 432, 2937.CrossRefGoogle Scholar
Ludwicki, J.M. & Steen, P.H. 2020 Sweeping by sessile drop coalescence. arXiv:2005.06977.CrossRefGoogle Scholar
Lundgren, T.S. & Mansour, N.N. 1988 Oscillations of drops in zero gravity with weak viscous effects. J. Fluid Mech. 194, 479510.CrossRefGoogle Scholar
MacRobert, T.M. 1967 Spherical Harmonics. Pergamon.Google Scholar
Mampallil, D., Eral, H.B., Staicu, A., Mugele, F. & van den Ende, D. 2013 Electrowetting-driven oscillating drops sandwiched between two substrates. Phys. Rev. E 88 (5), 053015.CrossRefGoogle ScholarPubMed
Manglik, R.M., Jog, M.A., Gande, S.K. & Ravi, V. 2013 Damped harmonic system modeling of post-impact drop-spread dynamics on a hydrophobic surface. Phys. Fluids 25 (8), 082112.CrossRefGoogle Scholar
Massinon, M., De Cock, N., Forster, W.A., Nairn, J.J., McCue, S.W., Zabkiewicz, J.A. & Lebeau, F. 2017 Spray droplet impaction outcomes for different plant species and spray formulations. Crop Protection 99, 6575.CrossRefGoogle Scholar
Mercer, G.N., Sweatman, W.L. & Forster, W.A. 2010 A model for spray droplet adhesion, bounce or shatter at a crop leaf surface. In Progress in Industrial Mathematics at ECMI 2008 (ed. Fitt, A.D. et al. ), pp. 945951. Springer.CrossRefGoogle Scholar
van der Meulen, M.-J., Reinten, H., Wijshoff, H., Versluis, M., Lohse, D. & Steen, P. 2020 Nonaxisymmetric effects in drop-on-demand piezoacoustic inkjet printing. Phys. Rev. Appl. 13 (5), 054071.CrossRefGoogle Scholar
Miller, C.A. & Scriven, L.E. 1968 The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32 (3), 417435.CrossRefGoogle Scholar
Moonen, P.F., Yakimets, I. & Huskens, J. 2012 Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies. Adv. Mater. 24 (41), 55265541.CrossRefGoogle ScholarPubMed
Moreira, A.L.N., Moita, A.S. & Panao, M.R. 2010 Advances and challenges in explaining fuel spray impingement: how much of single droplet impact research is useful? Prog. Energy Combust. Sci. 36 (5), 554580.CrossRefGoogle Scholar
Nayak, L., Mohanty, S., Nayak, S.K. & Ramadoss, A. 2019 A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater. Chem. C 7 (29), 87718795.CrossRefGoogle Scholar
Nilsson, M.A., Daniello, R.J. & Rothstein, J.P. 2010 A novel and inexpensive technique for creating superhydrophobic surfaces using teflon and sandpaper. J. Phys. D: Appl. Phys. 43 (4), 045301.CrossRefGoogle Scholar
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2004 Vibrated sessile drops: transition between pinned and mobile contact line oscillations. Eur. Phys. J. E 14 (4), 395404.CrossRefGoogle ScholarPubMed
Pasandideh-Fard, M., Qiao, Y.M., Chandra, S. & Mostaghimi, J. 1996 Capillary effects during droplet impact on a solid surface. Phys. Fluids 8 (3), 650659.CrossRefGoogle Scholar
Peck, B. & Sigurdson, L. 1994 The three-dimensional vortex structure of an impacting water drop. Phys. Fluids 6 (2), 564576.CrossRefGoogle Scholar
Podgorski, T., Flesselles, J.-M. & Limat, L. 2001 Corners, cusps, and pearls in running drops. Phys. Rev. Lett. 87 (3), 036102.CrossRefGoogle ScholarPubMed
Prosperetti, A. 1980 Free oscillations of drops and bubbles: the initial-value problem. J. Fluid Mech. 100 (2), 333347.CrossRefGoogle Scholar
Prosperetti, A., et al. 1980 Normal-mode analysis for the oscillations of a viscous liquid drop in an immiscible liquid. J. Méc. 19 (1), 149182.Google Scholar
Ramalingam, S.K. & Basaran, O.A. 2010 Axisymmetric oscillation modes of a double droplet system. Phys. Fluids 22, 112111.CrossRefGoogle Scholar
Ravi, V., Jog, M.A. & Manglik, R.M. 2013 Effects of pseudoplasticity on spread and recoil dynamics of aqueous polymeric solution droplets on solid surfaces. Interfacial Phenom. Heat. Transfer 1 (3), 273287.CrossRefGoogle Scholar
Rayleigh, L. 1879 On the capillary phenomenon of jets. Proc. R. Soc. Lond. A 29, 7197.Google Scholar
Reid, W.H. 1960 The oscillations of a viscous liquid drop. Q. Appl. Maths 18, 8689.CrossRefGoogle Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid. Dyn. Res. 12 (2), 61.CrossRefGoogle Scholar
Richard, D., Clanet, C. & Quéré, D. 2002 Contact time of a bouncing drop. Nature 417 (6891), 811811.CrossRefGoogle ScholarPubMed
Richard, D. & Quéré, D. 2000 Bouncing water drops. Europhys. Lett. 50 (6), 769.CrossRefGoogle Scholar
Rioboo, R., Tropea, C. & Marengo, M. 2001 Outcomes from a drop impact on solid surfaces. Atomiz. Sprays 11 (2), 155165.CrossRefGoogle Scholar
Roisman, I.V., Prunet-Foch, B., Tropea, C. & Vignes-Adler, M. 2002 Multiple drop impact onto a dry solid substrate. J. Colloid Interface Sci. 256 (2), 396410.CrossRefGoogle Scholar
Scheller, B.L. & Bousfield, D.W. 1995 Newtonian drop impact with a solid surface. AIChE J. 41 (6), 13571367.CrossRefGoogle Scholar
Šikalo, Š., Marengo, M., Tropea, C. & Ganić, E.N. 2002 Analysis of impact of droplets on horizontal surfaces. Exp. Therm. Fluid Sci. 25 (7), 503510.CrossRefGoogle Scholar
Snoeijer, J.H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.CrossRefGoogle Scholar
Steen, P.H., Chang, C.-T. & Bostwick, J.B. 2019 Droplet motions fill a periodic table. Proc. Natl Acad. Sci. USA 116 (11), 48494854.CrossRefGoogle ScholarPubMed
Stoev, K., Ramé, E. & Garoff, S. 1999 Effects of inertia on the hydrodynamics near moving contact lines. Phys. Fluids 11 (11), 32093216.CrossRefGoogle Scholar
Strani, M. & Sabetta, F. 1984 Free vibrations of a drop in partial contact with a solid support. J. Fluid Mech. 141, 233.CrossRefGoogle Scholar
Stüwe, D., Mager, D., Biro, D. & Korvink, J.G. 2015 Solvent inkjet printing process for the fabrication of polymer solar cells. Adv. Mater. 27, 599626.CrossRefGoogle Scholar
Sun, Y., Zhang, Y., Liang, Q., Zhang, Y., Chi, H., Shi, Y. & Fang, D. 2013 Solvent inkjet printing process for the fabrication of polymer solar cells. RSC Adv. 3 (30), 1192511934.CrossRefGoogle Scholar
Thoroddsen, S.T., Etoh, T.G., Takehara, K., Ootsuka, N. & Hatsuki, Y. 2005 The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.CrossRefGoogle Scholar
Tilger, C.F., Olles, J.D. & Hirsa, A.H. 2013 Phase behavior of oscillating double droplets. Appl. Phys. Lett. 103 (26), 264105.CrossRefGoogle Scholar
Trinh, E. & Wang, T.G. 1982 Large-amplitude free and driven drop-shape oscillation: experimental results. J. Fluid Mech. 122, 315338.CrossRefGoogle Scholar
Trujillo-Pino, A. 2019 Accurate subpixel edge location. MATLAB Central File Exchange. Available at: https://www.mathworks.com/matlabcentral/fileexchange/48908-accurate-subpixel-edge-location.Google Scholar
Tsamopoulos, J.A. & Brown, R.A. 1983 Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519537.CrossRefGoogle Scholar
Ukiwe, C. & Kwok, D.Y. 2005 On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21 (2), 666673.CrossRefGoogle ScholarPubMed
Valentine, R.S., Sather, N.F. & Heideger, W.J. 1965 The motion of drops in viscous media. Chem. Engng Sci. 20 (8), 719728.CrossRefGoogle Scholar
Versluis, M. 2013 High-speed imaging in fluids. Exp. Fluids 54 (2), 1458.CrossRefGoogle Scholar
Vukasinovic, B., Smith, M.K. & Glezer, A. 2007 Dynamics of a sessile drop in forced vibration. J. Fluid Mech. 587, 395423.CrossRefGoogle Scholar
Wang, T.G., Anilkumar, A.V. & Lee, C.P. 1996 Oscillations of liquid drops: results from USML-1 experiments in space. J. Fluid Mech. 308, 114.CrossRefGoogle Scholar
Wesson, E. & Steen, P. 2020 Steiner triangular drop dynamics. Chaos 30 (2), 023118.CrossRefGoogle ScholarPubMed
Winkels, K.G., Peters, I.R., Evangelista, F., Riepen, M., Daerr, A., Limat, L. & Snoeijer, J.H. 2011 Receding contact lines: from sliding drops to immersion lithography. Eur. Phys. J.: Spec. Top. 192 (1), 195205.Google Scholar
Winkels, K.G., Weijs, J.H., Eddi, A. & Snoeijer, J.H. 2012 Initial spreading of low-viscosity drops on partially wetting surfaces. Phys. Rev. E 85 (5), 055301.CrossRefGoogle ScholarPubMed
Worthington, A.M. 1877 XXVIII. On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. A 25 (171–178), 261272.Google Scholar
Xia, Y. & Steen, P.H. 2018 Moving contact-line mobility measured. J. Fluid Mech. 841, 767783.CrossRefGoogle Scholar
Xia, Y. & Steen, P.H. 2020 Dissipation of oscillatory contact lines using resonant mode scanning. NPJ Microgravity 6 (1), 17.CrossRefGoogle ScholarPubMed
Yarin, A.L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar