Skip to main content
Log in

A variational discrete element method for the computation of Cosserat elasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The variational discrete element method developed in Marazzato et al. (Int J Numer Methods Eng, 121(23):5295–5319, 2020) for dynamic elasto-plastic computations is adapted to compute the deformation of elastic Cosserat materials. In addition to cellwise displacement degrees of freedom (dofs), cellwise rotational dofs are added. A reconstruction is devised to obtain \(P^1\) non-conforming polynomials in each cell and thus constant strains and stresses in each cell. The method requires only the usual macroscopic parameters of a Cosserat material and no microscopic parameter. Numerical examples show the robustness of the method for both static and dynamic computations in two and three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fundamental Algorithms for Scientific Computing in Python (2020) SciPy 1.0. Nat Methods 17:261–272

    Article  Google Scholar 

  2. André D, Girardot J, Hubert C (2019) A novel DEM approach for modeling brittle elastic media based on distinct lattice spring model. Comput Methods Appl Mech Eng 350:100–122

    Article  MathSciNet  Google Scholar 

  3. André D, Iordanoff I, Charles J-L, Néauport J (2012) Discrete element method to simulate continuous material by using the cohesive beam model. Comput Methods Appl Mech Eng 213:113–125

    Article  Google Scholar 

  4. André D, Jebahi M, Iordanoff I, Charles J-L, Néauport J (2013) Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter. Comput Methods Appl Mech Eng 265:136–147

    Article  Google Scholar 

  5. Arnold D (1982) An interior penalty finite element method with discontinuous elements. SIAM J Numer Anal 19(4):742–760

    Article  MathSciNet  Google Scholar 

  6. Avci B, Wriggers P (2012) A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows. J Appl Mech 79(1):2698

    Article  Google Scholar 

  7. Balay S, Abhyankar S, Adams M, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp W (2019) Petsc users manual

  8. Belytschko T, Hughes TJR (1983) Computational methods for transient analysis, vol 1. North-Holland(Computational Methods in Mechanics, Amsterdam

    MATH  Google Scholar 

  9. Bleyer J (2018) Numerical tours of computational mechanics with fenics

  10. Boiveau T, Burman E (2016) A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity. IMA J Numer Anal 36(2):770–795

    Article  MathSciNet  Google Scholar 

  11. Brocato M, Capriz G (2001) Gyrocontinua. Int J Solids Struct 38(6–7):1089–1103

    Article  Google Scholar 

  12. Burman E (2012) A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions. SIAM J Numer Anal 50(4):1959–1981

    Article  MathSciNet  Google Scholar 

  13. Cosserat E, Cosserat F (1909) Théorie des corps déformables. A. Hermann et fils

  14. Cundall P, Strack O (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  15. Dalcin L, Paz R, Kler P, Cosimo A (2011) Parallel distributed computing using python. Adv Water Resour 34(9):1124–1139

    Article  Google Scholar 

  16. Di Pietro DA (2012) Cell centered Galerkin methods for diffusive problems. ESAIM Math Modell Numer Anal 46(1):111–144

    Article  MathSciNet  Google Scholar 

  17. Ericksen JL (1974) Liquid crystals and Cosserat surfaces. Q J Mech Appl Math 27(2):213–219

    Article  Google Scholar 

  18. Eymard R, Gallouët T, Herbin R (2009) Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J Numer Anal 30(4):1009–1043

    Article  MathSciNet  Google Scholar 

  19. David C-LF, Saunders M (2011) Lsmr: an iterative algorithm for sparse least-squares problems. SIAM J Sci Comput 33(5):2950–2971

    Article  MathSciNet  Google Scholar 

  20. Forest S, Pradel F, Sab K (2001) Asymptotic analysis of heterogeneous Cosserat media. Int J Solids Struct 38(26–27):4585–4608

    Article  MathSciNet  Google Scholar 

  21. Godio M, Stefanou I, Sab K, Sulem J, Sakji S (2017) A limit analysis approach based on Cosserat continuum for the evaluation of the in-plane strength of discrete media: application to masonry. Eur J Mech A/Solids 66:168–192

    Article  MathSciNet  Google Scholar 

  22. Hoover WG, Ashurst WT, Olness RJ (1974) Two-dimensional computer studies of crystal stability and fluid viscosity. J Chem Phys 60(10):4043–4047

    Article  Google Scholar 

  23. Jebahi M, André D, Terreros I, Iordanoff I (2015) Discrete element method to model 3D continuous materials. Wiley, New York

    Book  Google Scholar 

  24. Jeong J, Neff P (2010) Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions. Math Mech Solids 15(1):78–95

    Article  MathSciNet  Google Scholar 

  25. Lamb H (1904) On the propagation of tremors over the surface of an elastic solid. Philos Trans R Soc London Ser A 203(359–371):1–42

    MATH  Google Scholar 

  26. Logg A, Mardal K-A, Wells G (2012) Automated solution of differential equations by the finite element method: the FEniCS book, vol 84. Springer, Berlin

    Book  Google Scholar 

  27. Logg A, Wells GN (2010) Dolfin: automated finite element computing. ACM Trans Math Softw 37(2):10298

    Article  MathSciNet  Google Scholar 

  28. Marazzato F, Ern A, Monasse L (2020) A variational discrete element method for quasistatic and dynamic elastoplasticity. Int J Numer Methods Eng 121(23):5295–5319

    Article  MathSciNet  Google Scholar 

  29. Marazzato F, Ern A, Monasse L (2021) Quasi-static crack propagation with a Griffith criterion using a discrete element method

  30. Mariotti C (2007) Lamb’s problem with the lattice model Mka3D. Geophys J Int 171(2):857–864

    Article  Google Scholar 

  31. Michael M, Vogel F, Peters B (2015) DEM-FEM coupling simulations of the interactions between a tire tread and granular terrain. Comput Methods Appl Mech Eng 289:227–248

    Article  MathSciNet  Google Scholar 

  32. Monasse L, Mariotti C (2012) An energy-preserving Discrete Element Method for elastodynamics. ESAIM Math Modell Numer Anal 46:1527–1553

    Article  MathSciNet  Google Scholar 

  33. Neff P (2006) A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int J Eng Sci 44(8–9):574–594

    Article  MathSciNet  Google Scholar 

  34. Neff P, Chelminski K (2007) Well-posedness of dynamic Cosserat plasticity. Appl Math Optim 56(1):19–35

    Article  MathSciNet  Google Scholar 

  35. Notsu H, Kimura M (2014) Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Netw Heterog Media 9(4):10265

    MathSciNet  MATH  Google Scholar 

  36. Potyondy D, Cundall P (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  37. Providas E, Kattis MA (2002) Finite element method in plane Cosserat elasticity. Comput Struct 80(27–30):2059–2069

    Article  Google Scholar 

  38. Puscas MA, Monasse L, Ern A, Tenaud C, Mariotti C (2015) A conservative Embedded Boundary method for an inviscid compressible flow coupled with a fragmenting structure. Int J Numer Methods Eng 103(13):970–995

    Article  MathSciNet  Google Scholar 

  39. Rattez H, Stefanou I, Sulem J (2018) The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part i: Theory and linear stability analysis. J Mech Phys Solids 115:54–76

    Article  MathSciNet  Google Scholar 

  40. Rattez H, Stefanou I, Sulem J, Veveakis M, Poulet T (2018) Numerical analysis of strain localization in rocks with thermo-hydro-mechanical couplings using Cosserat continuum. Rock Mech Rock Eng 51(10):3295–3311

    Article  Google Scholar 

  41. Ries A, Wolf D, Unger T (2007) Shear zones in granular media: three-dimensional contact dynamics simulation. Phys Rev E 76(5):051301

    Article  Google Scholar 

  42. Sautot C, Bordas S, Hale J (2014) Extension of 2D FEniCS implementation of Cosserat non-local elasticity to the 3D case. Technical report, Université du Luxembourg

  43. Shelukhin VV, Ružička M (2013) On Cosserat-Bingham fluids. ZAMM-J Appl Math Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 93(1):57–72

    Article  MathSciNet  Google Scholar 

  44. Stefanou I, Sulem J, Vardoulakis I (2008) Three-dimensional Cosserat homogenization of masonry structures: elasticity. Acta Geotech 3(1):71–83

    Article  Google Scholar 

  45. Sulem J, Vardoulakis IG (1995) Bifurcation analysis in geomechanics. CRC Press, London

    Book  Google Scholar 

Download references

Acknowledgements

The author would like to thank A. Ern from Inria and Ecole Nationale des Ponts et Chaussées for stimulating discussions and L. Monasse from Inria for carefully proof-reading this manuscript. The author would also like to thank the anonymous reviewers for their contributions which helped substantially improve this paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Marazzato.

Ethics declarations

Conflict of interest

The author has no conflict of interest.

Data Availability

Not aplicable.

Code availability

https://github.com/marazzaf/DEM_cosserat.git

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marazzato, F. A variational discrete element method for the computation of Cosserat elasticity. Comput Mech 68, 1097–1109 (2021). https://doi.org/10.1007/s00466-021-02060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02060-y

Keywords

Navigation