Skip to main content
Log in

Schur–Weyl duality for tensor powers of the Burau representation

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

Artin’s braid group \(B_n\) is generated by \(\sigma _1, \ldots , \sigma _{n-1}\) subject to the relations

$$\begin{aligned} \sigma _i \sigma _{i+1} \sigma _i = \sigma _{i+1} \sigma _i \sigma _{i+1}, \quad \sigma _i\sigma _j = \sigma _j \sigma _i \text { if } |i-j|>1. \end{aligned}$$

For complex parameters \(q_1,q_2\) such that \(q_1q_2 \ne 0\), the group \(B_n\) acts on the vector space \(\mathbf {E}= \sum _i \mathbb {C}\mathbf {e}_i\) with basis \(\mathbf {e}_1, \ldots , \mathbf {e}_n\) by

$$\begin{aligned} \sigma _i \cdot \mathbf {e}_i= & {} (q_1+q_2)\mathbf {e}_i + q_1\mathbf {e}_{i+1}, \quad \sigma _i \cdot \mathbf {e}_{i+1} = -q_2\mathbf {e}_i, \\ \sigma _i \cdot \mathbf {e}_j= & {} q_1 \mathbf {e}_j \quad \text { if }\; j \ne i,i+1. \end{aligned}$$

This representation is (a slight generalization of) the Burau representation. If \(q = -q_2/q_1\) is not a root of unity, we show that the algebra of all endomorphisms of \(\mathbf {E}^{\otimes r}\) commuting with the \(B_n\)-action is generated by the place-permutation action of the symmetric group \(S_r\) and the operator \(p_1\), given by

$$\begin{aligned} p_1(\mathbf {e}_{j_1} \otimes \mathbf {e}_{j_2} \otimes \cdots \otimes \mathbf {e}_{j_r}) = q^{j_1-1} \, \sum _{i=1}^n \mathbf {e}_i \otimes \mathbf {e}_{j_2} \otimes \cdots \otimes \mathbf {e}_{j_r} . \end{aligned}$$

Equivalently, as a \((\mathbb {C}B_n, \mathcal {P}'_r([n]_q))\)-bimodule, \(\mathbf {E}^{\otimes r}\) satisfies Schur–Weyl duality, where \(\mathcal {P}'_r([n]_q)\) is a certain subalgebra of the partition algebra \(\mathcal {P}_r([n]_q)\) on 2r nodes with parameter \([n]_q = 1+q+\cdots + q^{n-1}\), isomorphic to the semigroup algebra of the “rook monoid” studied by W. D. Munn, L. Solomon, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barcelo, H., Ram, A., Combinatorial representation theory. In: New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996), Mathematical Sciences Research Institute Publications, vol. 38, pp. 23–90. Cambridge University Press, Cambridge (1999)

  2. Bigelow, S.: Braid groups and Iwahori–Hecke algebras. In: Problems on Mapping Class Groups and Related Topics. Proceedings of Symposia in Pure Mathematics, vol. 74, pp. 285–299. American Mathematics Society, Providence, RI (2006)

  3. Birman, J.S., Long, D.D., Moody, J.A., Finite-dimensional representations of Artin’s braid group. In: The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions (Brooklyn, NY, 1992), Contemporary Mathematics, vol. 169, pp. 123–132. American Mathematical Society, Providence, RI (1994)

  4. Bowman, C., De Visscher, M., Orellana, R.: The partition algebra and the Kronecker coefficients. Trans. Am. Math. Soc. 367(5), 3647–3667 (2015)

    Article  MathSciNet  Google Scholar 

  5. Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. (2) 38(4), 857–872 (1937)

    Article  MathSciNet  Google Scholar 

  6. Burau, W.: Über Zopfgruppen und gleichsinnig verdrillte Verkettungen. Abh. Math. Sem. Univ. Hamburg 11(1), 179–186 (1935). (German)

    Article  MathSciNet  Google Scholar 

  7. Chevalley, C.: Théorie des groupes de Lie. Tome III. Théorèmes généraux sur les algèbres de Lie, Actualités Sci. Ind. no. 1226, Hermann & Cie, Paris, (1955) (French)

  8. Deligne, P.: La catégorie des représentations du groupe symétrique St, lorsque t n’est pas un entier naturel. In: Algebraic Groups and Homogeneous Spaces, Tata Institute of Fundamental Research Studies in Mathematics, vol. 19, pp. 209–273. Tata Institute of Fundamental Research, Mumbai (2007) (French, with English and French summaries)

  9. Fulton, W.: Young tableaux, London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  10. Fulton, W., Harris, J.: Representation Theory, Graduate Texts in Mathematics, vol. 129. Springer, New York (1991). A first course; Readings in Mathematics

  11. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123(1), 1–34 (1996)

    Article  MathSciNet  Google Scholar 

  12. Green, J.A.: Polynomial representations of GLn. Lecture Notes in Mathematics, vol. 830. Springer, Berlin (1980)

    Google Scholar 

  13. Green, R., Paget, R.: Iterated inflations of cellular algebras. J. Algebra 493, 341–345 (2018)

    Article  MathSciNet  Google Scholar 

  14. Grood, C.: A Specht module analog for the rook monoid. Electron. J. Combin. 9(1) (2002) Research Paper 2, 10

  15. Goodman, R., Wallach, N.R.: Symmetry, representations, and invariants. In: Graduate Texts in Mathematics, vol. 255. Springer, Dordrecht (2009)

  16. Hall, B.C.: Lie groups, Lie algebras, and representations. In: Graduate Texts in Mathematics, vol. 222. Springer, New York (2003)

  17. Halverson, T.: Representations of the q-rook monoid. J. Algebra 273(1), 227–251 (2004)

    Article  MathSciNet  Google Scholar 

  18. Halverson, T., Ram, A.: Partition algebras. Eur. J. Combin. 26(6), 869–921 (2005)

    Article  MathSciNet  Google Scholar 

  19. Halverson, T., Thiem, N.: q-partition algebra combinatorics. J. Combin. Theory Ser. A 117(5), 507–527 (2010)

    Article  MathSciNet  Google Scholar 

  20. Howe, R.: Very basic Lie theory. Am. Math. Mon. 90(9), 600–623 (1983)

    Article  MathSciNet  Google Scholar 

  21. Jacobson, N.: Basic Algebra. W. H. Freeman and Co., San Francisco (1980)

    MATH  Google Scholar 

  22. Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. (2) 126(2), 335–388 (1987)

    Article  MathSciNet  Google Scholar 

  23. Jones, V.F.R., The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Scientific Publishing, River Edge, NJ, pp. 259–267 (1994)

  24. Kassel, C., Turaev, V.: Braid groups. In: Graduate Texts in Mathematics, vol. 247. Springer, New York (2008)

  25. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53(2), 165–184 (1979)

    Article  MathSciNet  Google Scholar 

  26. Kraft, H.P., Procesi, C.: Classical Invariant Theory: A Primer (1996) https://kraftadmin.wixsite.com/hpkraft. Accessed (April 2020)

  27. König, S., Xi, C.: Cellular Algebras: Inflations and Morita Equivalences. J. Lond. Math. Soc. 60(3), 700–722 (1999)

    Article  MathSciNet  Google Scholar 

  28. König, S., Xi, C.: A characteristic free approach to Brauer algebras. Trans. Am. Math. Soc. 353(4), 1489–1505 (2001)

    Article  MathSciNet  Google Scholar 

  29. Lang, S.: Algebra, 3rd ed. In: Graduate Texts in Mathematics, vol. 211, Springer, New York (2002)

  30. Marin, I.: L’algèbre de Lie des transpositions. J. Algebra 310(2), 742–774 (2007). (French, with English and French summaries)

    Article  MathSciNet  Google Scholar 

  31. Martin, P.: Potts models and related problems in statistical mechanics. In: Series on Advances in Statistical Mechanics, vol. 5. World Scientific Publishing Co., Inc, Teaneck, NJ (1991)

  32. Martin, P.: Temperley–Lieb algebras for nonplanar statistical mechanics-the partition algebra construction. J. Knot Theory Ramifications 3(1), 51–82 (1994)

    Article  MathSciNet  Google Scholar 

  33. Martin, P.: The structure of the partition algebras. J. Algebra 183(2), 319–358 (1996)

    Article  MathSciNet  Google Scholar 

  34. Martin, S.: Schur algebras and representation theory. In: Cambridge Tracts in Mathematics, vol. 112. Cambridge University Press, Cambridge (1993)

  35. Muir, T.: A treatise on the theory of determinants. In: Revised and enlarged by William H. Metzler. Dover Publications Inc., New York (1960). Reprint of the 1933 ed

  36. Munn, W.D.: Matrix representations of semigroups. Proc. Camb. Philos. Soc. 53, 5–12 (1957)

    Article  MathSciNet  Google Scholar 

  37. Munn, W.D.: The characters of the symmetric inverse semigroup. Proc. Camb. Philos. Soc. 53, 13–18 (1957)

    Article  MathSciNet  Google Scholar 

  38. Murphy, G.E.: The representations of Hecke algebras of type \(A_{n}\). J. Algebra 173(1), 97–121 (1995)

    Article  MathSciNet  Google Scholar 

  39. Procesi, C.: Lie groups. In: Universitext. Springer, New York (2007)

  40. Schur, I.: Über die rationalen Darstellungen der allgemeinen lineare Gruppe, Sitz. Preuss. Akad. Wiss. Phys.-Math. Klasse (1927); reprinted in I. Schur, Gesammelte Abhandlungen. Band III, Springer, Berlin-New York, (1973)

  41. Solomon, L.: Representations of the rook monoid. J. Algebra 256(2), 309–342 (2002)

    Article  MathSciNet  Google Scholar 

  42. Temperley, H.N.V., Lieb, E.H.: Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem. Proc. Roy. Soc. Lond. Ser. A 322(1549), 251–280 (1971)

  43. Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, NJ (1939)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Greg Kuperberg for useful discussions regarding the proof of Theorem 5.2, given in Appendix A, and to Stephen Donkin and Darij Grinberg for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Doty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 5.2

Appendix: Proof of Theorem 5.2

Assume that \(q_1q_2 \ne 0\) and \(q = -q_2/q_1\) is not a root of unity. In this appendix (which is independent of Sects. 610) we give an elementary proof that the Zariski closure \(\overline{G}\) contains \({\text {SL}}(\mathbf {F})\), where \(G = \rho (B_n)\) is the image of the reduced Burau representation \(\rho : B_n \rightarrow {\text {GL}}(\mathbf {F})\). This result is needed to obtain Schur–Weyl duality for \(\mathbf {F}^{\otimes k}\) (see Theorem 5.3), which is needed for the proof of the main results in Sect. 9. In case q is transcendental, the result is a special case of [30, Theorem B], obtained by different methods.

We get the following result from Lemma 3.3 by an elementary induction on k, which is left to the reader.

Lemma A.1

Let k be a positive integer. For any \(i,j = 1, \ldots , n-1\) the action of \(\sigma _i^k \in B_n\) on \(\mathbf {f}_j \in \mathbf {F}\) is given by the rules

  1. (a)

    \(\rho (\sigma _i^k) \mathbf {f}_j = q_1^k \mathbf {f}_j\) if \(j \ne i-1, i, i+1\).

  2. (b)

    \(\rho (\sigma _i^k) \mathbf {f}_{i-1} = q_1^k \mathbf {f}_{i-1} + q_1 \Phi _k(q_1,q_2) \mathbf {f}_i\).

  3. (c)

    \(\rho (\sigma _i^k) \mathbf {f}_i = q_2^k \mathbf {f}_i\).

  4. (d)

    \(\rho (\sigma _i^k) \mathbf {f}_{i+1} = -q_2 \Phi _k(q_1,q_2) \mathbf {f}_i + q_1^k\mathbf {f}_{i+1}\)

where \(\Phi _k(q_1,q_2) = \sum _{j=0}^{k-1} q_1^j q_2^{k-1-j} = \frac{q_1^k-q_2^k}{q_1-q_2}\).

Set \(\Phi _k = \Phi _k(q_1,q_2)\) for short. For convenience of reference, the matrices of the operators \(\rho (\sigma _i^k)\) with respect to the \(\{\mathbf {f}_i\}\) basis are listed below:

$$\begin{aligned} \rho (\sigma _1^k)&= \begin{bmatrix} q_2^k &{}\quad -q_2\Phi _k &{}\quad 0 &{}\quad \cdots &{}\quad 0\\ 0 &{}\quad q_1^k &{}\quad 0 &{}\quad \cdots &{}\quad 0\\ 0 &{}\quad 0 &{}\quad q_1^k &{}\quad \cdots &{}\quad 0\\ \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \cdots &{}\quad q_1^k \end{bmatrix} , \quad \rho (\sigma _{n-1}^k) = \begin{bmatrix} q_1^k &{}\quad \cdots &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots \\ 0 &{}\quad \cdots &{}\quad q_1^k &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \cdots &{}\quad 0 &{}\quad q_1^k &{}\quad 0 \\ 0 &{}\quad \cdots &{}\quad 0 &{}\quad q_1\Phi _k &{}\quad q_2^k \\ \end{bmatrix}, \\ \rho (\sigma _i^k)&= \begin{bmatrix} q_1^k &{}\quad \cdots &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0\\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad 0\\ 0 &{}\quad \cdots &{}\quad q_1^k &{}\quad 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0\\ 0 &{}\quad \cdots &{}\quad q_1\Phi _k &{}\quad q_2^k &{}\quad -q_2\Phi _k &{}\quad \cdots &{}\quad 0\\ 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0 &{}\quad q_1^k &{}\quad \cdots &{}\quad 0\\ \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \cdots &{}\quad q_1^k \end{bmatrix} \quad (1< i < n-1) . \end{aligned}$$

Henceforth, we identify \({\text {GL}}(\mathbf {F}) \cong {\text {GL}}_{n-1}(\mathbb {C})\) by means of the basis \(\{\mathbf {f}_i\}\).

Recall (Remark 3.4) that \(\det (\sigma _j) = q_1^{n-2}q_2\) for all j. The proof of Theorem 5.2 falls naturally into two cases, depending whether \(q_1^{n-2}q_2\) is or is not a root of unity. The non-root of unity case requires the following lemma.

Lemma A.2

Suppose that \(q_1^{n-2}q_2\) is not a root of unity. If \(g\in G\), \(0 \ne z\in \mathbb {C}\), then \(zg=zI_{n-1}g\in \overline{G}\).

Proof

It is well known [24] that the “full twist” \(\theta _n = \Delta _n^2 \in B_n\), where

$$\begin{aligned} \Delta _n = (\sigma _1 \cdots \sigma _{n-1})(\sigma _1 \cdots \sigma _{n-2}) \cdots (\sigma _1\sigma _2) \sigma _1, \end{aligned}$$

generates the center of the braid group \(B_n\). (An easy exercise [24, Exercise 1.3.2] gives the alternate formula \(\theta _n = (\sigma _1 \cdots \sigma _{n-1})^n\).) Thus, by Schur’s Lemma it follows that \(\rho (\theta _n)=\lambda I_{n-1}\) for some \(\lambda \in \mathbb {C}\). Now an easy calculation shows that \(\lambda = (q_1^{n-2}q_2)^n\). As \(\lambda \) is not a root of unity, the Zariski closure of the subgroup generated by \(\rho (\theta _n)\) is \(H=\{zI_{n-1}\,:\, z\ne 0\}\) and so \(zI_{n-1} \in \overline{G}\) for every \(0 \ne z\in \mathbb {C}\). Since \(\overline{G}\) is a group, for any \(g\in G\) it follows that \(zg = g zI_{n-1} \in \overline{G}\). \(\square \)

Let \(\{e_{ij}\}_{i,j=1}^{n-1}\) be the standard basis of matrix units for matrix space, defined in terms of the Kronecker delta symbols by \(e_{ij} = (\delta _{ik}\delta _{jl})_{k,l=1}^{n-1}\). Set

$$\begin{aligned} E(i) = I_{n-1}-e_{ii} = \textstyle \sum _{j \ne i} e_{jj}. \end{aligned}$$

We also need the constants

$$\begin{aligned} a = \frac{q}{1+q}, \quad b = \frac{1}{1+q}. \end{aligned}$$

Notice that \(a = -q_2/(q_1-q_2)\), \(b = q_1/(q_1-q_2)\).

Proposition A.3

Assume that \(q_1q_2 \ne 0\) and \(q = -q_2/q_1\) is not a root of unity. Let \(\overline{G}\) be the Zariski closure of \(G = \rho (B_n)\).

  1. (a)

    If \(q_1^{n-2}q_2\) is not a root of unity, then \(\overline{G}\) contains the one-parameter subgroups \(H_1, \ldots , H_{n-1}\) where

    $$\begin{aligned} H_i&= (1-\delta _{i,1})b(1-z_i)e_{i,i-1}+z_i e_{ii} \\&\quad +(1-\delta _{i,n-1})a(1-z_i)e_{i,i+1} +E(i) \end{aligned}$$

    for nonzero complex scalars \(z_1,\ldots z_{n-1}\).

  2. (b)

    If \(q_1^{n-2}q_2\) is a root of unity, then \(\overline{G}\) contains the one-parameter subgroups \(K_1, \ldots , K_{n-1}\) where

    $$\begin{aligned} K_i&= (1-\delta _{i,1})b(w_i-w_i^{2-n})e_{i,i-1}+w_i^{2-n} e_{ii}\\&\quad +(1-\delta _{i,n-1})a(w_i-w_i^{2-n})e_{i,i+1} + w_iE(i) \end{aligned}$$

    for nonzero complex scalars \(w_1,\ldots w_{n-1}\).

Proof

(a) It follows from Lemma A.2 that \(q_1^{-1} \rho (\sigma _i)\in \overline{G}\) for all \(i=1,\ldots ,n-1\). Hence, \((q_1^{-1}\rho (\sigma _i))^k = q_1^{-k} \rho (\sigma _i^k)\) belongs to \(\overline{G}\) for all i and all \(k\ge 0\). By Lemma A.1, it follows by an easy calculation that

$$\begin{aligned} (q_1^{-1}\rho (\sigma _i))^k&= (1-\delta _{1,i})b(1-(-q)^k)e_{i,i-1} + (-q)^ke_{ii}\\&\quad + (1-\delta _{i,n-1})a(1-(-q)^k)e_{i,i+1} + E(i). \end{aligned}$$

Notice that this matrix depends only on \(q = -q_2/q_1\) and lies in \(H_i\) for any \(k\ge 0\). Since \(-q\) is not a root of unity, it follows that the intersection \(H_i \cap \overline{G}\) is infinite. Thus, \(H_i \subset \overline{G}\), since \(H_i\) is a closed one-parameter group.

(b) Since \(q_1^{n-2}q_2\) is a root of unity, there is a positive integer d such that \((q_1^{n-2}q_2)^d = 1\), hence \(q_2^{d}=q_1^{d(2-n)}\). Since \(q=-q_2/q_1\), it follows that

$$\begin{aligned} q^{d} = (-1)^d \, q_1^{d(1-n)}. \end{aligned}$$

Now q is not a root of unity, so \(q_1\) cannot be a root of unity. By Lemma A.1, if k is a non-negative integer we have

$$\begin{aligned} \rho (\sigma _i^{kd})&= (1-\delta _{i,1})b(q_1^{kd}-q_1^{kd(2-n)})e_{i,i-1} + q_1^{kd(2-n)}e_{ii} \\&\quad + (1-\delta _{i,n-1})a(q_1^{kd}-q_1^{kd(2-n)})e_{i,i+1} + q_1^{kd} E(i). \end{aligned}$$

Since \(q_1\) is not a root of unity, the powers \(q_1^{kd}\) are distinct for all k and thus the matrices \(\rho (\sigma _i^{kd})\) are also distinct for all k. Notice that \(\rho (\sigma _i^{kd})\) belongs to \(K_i\) for all k. Hence, the cardinality of \(K_i \cap \overline{G}\) is infinite. This forces \(K_i \subset \overline{G}\), as \(K_i\) is a closed one-parameter group.

\(\square \)

Corollary A.4

Assume that \(q_1q_2 \ne 0\) and \(q = -q_2/q_1\) is not a root of unity. Let \(\overline{G}\) be the Zariski closure of \(G = \rho (B_n)\).

  1. (a)

    If \(q_1^{n-2}q_2\) is not a root of unity, then the Lie algebra \({\text {Lie}}(\overline{G})\) contains the elements

    $$\begin{aligned} u_i = (1-\delta _{i,1}) b e_{i,i-1} + e_{ii} + (1-\delta _{i,n-1}) a e_{i,i+1} \end{aligned}$$

    for \(i = 1, \ldots , n-1\).

  2. (b)

    If \(q_1^{n-2}q_2\) is a root of unity, then \({\text {Lie}}(\overline{G})\) contains the elements

    $$\begin{aligned} v_i&= (1-\delta _{i,1}) b(n-1) e_{i,i-1} + (2-n)e_{ii} \\&\quad + (1-\delta _{i,n-1}) a(n-1) e_{i,i+1} + E(i) \end{aligned}$$

    for \(i = 1, \ldots , n-1\).

Proof

For (a), take the derivative \(d/dz_i\) at \(z_i=1\) of the one-parameter subgroup \(H_i\). Similarly, for (b) take the derivative \(d/dw_i\) at \(w_i=1\) of the one-parameter subgroup \(K_i\). \(\square \)

Proposition A.5

Assume that \(q_1q_2 \ne 0\) and q is not a root of unity. Suppose that \(n \ge 3\).

  1. (a)

    The Lie algebra generated by \(u_1, \ldots , u_{n-1}\) equals \(\mathfrak {gl}_{n-1}\).

  2. (b)

    The Lie algebra generated by \(v_1, \ldots , v_{n-1}\) equals \(\mathfrak {sl}_{n-1}\).

Proof

(a) Let \(\mathfrak {g}\) be the Lie algebra generated by \(u_1, \ldots , u_{n-1}\). Since \(\mathfrak {g}\subseteq \mathfrak {gl}_{n-1}\), it suffices to show the reverse containment. We will argue that \(e_{ij} \in \mathfrak {g}\), for all \(i,j = 1, \ldots , n-1\), making use of the standard commutator formula \([e_{ij}, e_{kl}] = \delta _{jk} e_{il} - \delta _{li} e_{kj}\).

Assume that \(n \ge 4\). Direct computation shows that

$$\begin{aligned} {[}u_1, [u_1,u_2]] + [u_1,u_2] = 2a(ab - 1) e_{12} - 2a^2 e_{13}. \end{aligned}$$

As \(a \ne 0\), it follows that

$$\begin{aligned} A'_2 = \tfrac{1}{2a}\big ( [u_1, [u_1,u_2]] + [u_1,u_2] \big ) = (ab - 1) e_{12} - a e_{13} \end{aligned}$$

is in \(\mathfrak {g}\). Then, \(A_1 = u_1\) and \(A_2 = bu_1 - A'_2 = be_{12}+e_{13}+ae_{14}\) are both in \(\mathfrak {g}\). Clearly \(A_1, A_2\) are linearly independent.

Next, we recursively compute elements \(A_k\) for \(k = 2, \ldots , n-1\) by defining

$$\begin{aligned} A_k = \tfrac{1}{a} [A_{k-1},u_k] \quad \text {for all } k = 3, \ldots , n-1. \end{aligned}$$

Then, by direct computation we have

$$\begin{aligned} A_k = {\left\{ \begin{array}{ll} b e_{1,k-1} + e_{1k} + a e_{1,k+1} &{}\quad \text {if } k = 3, \ldots , n-2,\\ b e_{1,n-2} + e_{1,n-1} &{}\quad \text {if } k = n-1. \end{array}\right. } \end{aligned}$$

We claim that the elements \(A_1, A_2, \ldots , A_{n-1}\) are linearly independent.

To see this, identify each \(A_k\) with its coordinate vector with respect to the basis \(\{e_{11}, \ldots , e_{1,n-1}\}\) of the first row of matrix space. Let M be the matrix whose rows are those coordinate vectors in order. Then, M is the \((n-1) \times (n-1)\) tridiagonal banded matrix

$$\begin{aligned} M= \begin{bmatrix} 1&{}\quad a&{}\quad 0&{}\quad \cdots &{}\quad 0\\ b&{}\quad 1&{}\quad a&{}\quad \ddots &{}\quad \vdots \\ 0&{}\quad b&{}\quad 1&{}\quad \ddots &{}\quad 0\\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad a\\ 0&{}\quad \cdots &{}\quad 0&{}\quad b&{}\quad 1 \end{bmatrix} \end{aligned}$$

with a’s on the super-diagonal and b’s on the sub-diagonal. Setting \(D_n = \det M\) we see by Eq. (7) that \(D_n\) satisfies

$$\begin{aligned} D_n = D_{n-1} - ab D_{n-2} \quad (n\ge 5), \end{aligned}$$
(27)

where \(D_3 = 1-ab\) and \(D_4 = 1-2ab\). Thus, we obtain the following. \(\square \)

Lemma A.6

\(D_n = \dfrac{[n]_q}{(1+q)^{n-1}}\) for all \(n \ge 3\).

Proof

First check directly that \(D_3\) and \(D_4\) satisfy the given formula. Assume by induction that \(D_{n-2}\) and \(D_{n-1}\) satisfy the formula. Applying the recursion (27) gives

$$\begin{aligned} D_n = \frac{[n-1]_q}{(1+q)^{n-2}} - \frac{q}{(1+q)^2} \frac{[n-2]_q}{(1+q)^{n-3}} = \frac{(1+q)[n-1]_q - q[n-2]_q}{(1+q)^{n-1}} \end{aligned}$$

and the result follows from the identity \((1+q)[n-1]_q - q[n-2]_q = [n]_q\). \(\square \)

Lemma A.6 proves the claim, as q is not a root of unity. The claim implies that \(\mathbb {C}A_1 + \mathbb {C}A_2 + \cdots + \mathbb {C}A_{n-1} = \sum _{j=1}^{n-1} \mathbb {C}e_{1j}\). Hence, \(e_{1j} \in \mathfrak {g}\) for all \(j = 1, \ldots , n-1\). Now we finish the proof quite easily, by observing that

$$\begin{aligned} {[}e_{ij}, u_{i+1}] = {\left\{ \begin{array}{ll} -b e_{i+1,j} &{} \quad \text {if } i+1 \ne j, \\ -b e_{jj} + be_{j-1,j-1} + e_{j-1,j} + ae_{j-1,j+1} &{}\quad \text {if } i+1 = j \ne n-1, \\ -b e_{n-1,n-1} + be_{n-2,n-2} + e_{n-2,n-1} &{} \quad \text {if } i+1 = j = n-1. \end{array}\right. } \end{aligned}$$

This implies that \([e_{ij}, u_{i+1}] = -b e_{1+1,j}\) modulo a linear combination of elements of the form \(e_{kl}\) where \(k < i+1\). Assuming by induction that the \(e_{kl} \in \mathfrak {g}\) for all \(k < i+1\), it follows from the fact that \(b \ne 0\) that \(e_{i+1,j} \in \mathfrak {g}\) for all j. This completes the proof of (a) in case \(n \ge 4\).

The case \(n=3\) must be handled separately, and is simpler. Notice that in this case

$$\begin{aligned} A'_2 = \tfrac{1}{2a}\big ( [u_1,[u_1,u_2]] + [u_1,u_2]\big ) = (ab-1) e_{12} \in \mathfrak {g}. \end{aligned}$$

Since \(ab-1 = 0\) if and only if \([3]_q = 1+q+q^2 = 0\), we see that \(ab-1 \ne 0\) as q is not a root of unity. Hence, \(e_{12} \in \mathfrak {g}\), and \(e_{11} = u_1 -a e_{12} \in \mathfrak {g}\). Thus, \([e_{11},u_2] = -b e_{21} \in \mathfrak {g}\), which implies that \(e_{21} \in \mathfrak {g}\) and \(e_{22} = u_2 - b e_{21} \in \mathfrak {g}\), completing the proof of (a) in the case \(n=3\).

(b) Now let \(\mathfrak {g}_1=\langle u_1,\ldots u_{n-1}\rangle \) be the Lie algebra in part (a), and set \(\mathfrak {g}_2=\langle v_1,\ldots v_{n-1}\rangle \). Notice that

$$\begin{aligned} u_k =\tfrac{1}{n-1}\left( I_{n-1} -v_k\right) \end{aligned}$$

for all k. Thus, \([u_i,u_j]=c[v_i,v_j]\) with \(c=1/(n-1)^2\). Hence, \(\mathfrak {g}_1'=\mathfrak {g}_2'\), that is, the derived algebras of \(\mathfrak {g}_1\), \(\mathfrak {g}_2\) coincide. By part (a), \(\mathfrak {g}_1=\mathfrak {gl}_{n-1}\), so \(\mathfrak {g}_1'=\mathfrak {gl}_{n-1}'=\mathfrak {sl}_{n-1}\). Thus, \(\mathfrak {g}_2'=\mathfrak {sl}_{n-1} \subset \mathfrak {g}_2.\) As it is obvious that \(\mathfrak {g}_2\subset \mathfrak {sl}_{n-1}\), it follows that \(\mathfrak {g}_2 =\mathfrak {sl}_{n-1}\). This completes the proof of Proposition A.5. \(\square \)

We now have all the tools needed to prove Theorem 5.2.

Proof of Theorem 5.2

It is well known (see, e.g., [16, 20]) that closed subgroups of \({\text {GL}}(\mathbf {F})\) contain the one-parameter subgroups generated by all elements of their Lie algebra; indeed, that can be taken as an equivalent definition of the Lie algebra for such groups. By Proposition A.5, it easily follows that \(\overline{G}\) contains \({\text {SL}}_{n-1} \cong {\text {SL}}(\mathbf {F})\), so we are done. (If \(n = 2\) there is nothing to prove, as \(\dim \mathbf {F}= 1\) in that case.) \(\square \)

Remark A.7

  1. (i)

    It is easy to see that \(\overline{G} = {\text {GL}}(\mathbf {F})\) if and only if \(q_1^{n-2}q_2\) is not a root of unity. The sufficiency of this condition follows from Proposition A.5(a). For its necessity, observe that if \(\xi = q_1^{n-2}q_2\) is a root of unity (of order d, say) then elements of G satisfy the polynomial equation

    $$\begin{aligned} \prod _{p=0}^{d-1} (\det (X_{ij}) - \xi ^p) = 0 \end{aligned}$$

    and not all elements of \({\text {GL}}(\mathbf {F})\) satisfy it.

  2. (ii)

    When \(q_1^{n-2} q_2\) is a primitive dth root of unity, for \(d>1\), we have a strict containment \(\overline{G} \supsetneqq {\text {SL}}(\mathbf {F})\), because the generators of G do not have determinant one.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doty, S., Giaquinto, A. Schur–Weyl duality for tensor powers of the Burau representation. Res Math Sci 8, 47 (2021). https://doi.org/10.1007/s40687-021-00282-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-021-00282-3

Navigation