Skip to main content

Advertisement

Log in

Single- and Multiobjective Optimizations of Dimensionally Stable Composites Using Genetic Algorithms

  • Published:
Mechanics of Composite Materials Aims and scope

The present study aims to design stacking sequences of dimensionally stable symmetric balanced laminated carbon/epoxy composites, with different numbers of layers, with a low coefficient of thermal expansion and high elastic moduli. To avoid excessive interlaminar stresses in the composites, the contiguity constraint for plies is also taken into consideration. In the design process, both single- and multiobjective optimization approaches, including genetic algorithms, are utilized. Results showed that stacking sequences ensuring lower thermal expansion coefficients and higher elastic moduli than those of traditional laminate designs can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. W. Wang, S. Gou, N. Chang, and W. Yang, “Optimum buckling design of composite stiffened panels using ant colony algorithm,” Compos. Struct., 92, 712-719 (2010).

    Article  Google Scholar 

  2. L. Aydin and H. S. Artem, “Comparison of stochastic search optimization algorithms for the laminated composites under mechanical and hygrothermal loadings,” J. Reinf. Plast. Comp., 30, No. 14, 1197-1212 (2011).

    Article  CAS  Google Scholar 

  3. F. Bressan, F. De Bona, and A. Soma, “Design of composite laminates with low thermal Expansion,” Proc. Instn. Mech. Engrs., Part L: J. Materials: Design and Applications, 218, 201-209 (2004).

  4. A. Rangarajan, J. D’Mello, V. Sundararaghavan, and A. M. Waas, “Minimization of thermal expansion of symmetric, balanced, angle ply laminates by optimization of fiber path configurations,” Compos. Sci. Technol., 71, 1105-1109 (2011).

    Article  CAS  Google Scholar 

  5. L. N. McCartney and A. Kelly, “Effective thermal and elastic properties of [+θ/−θ]s laminates,” Compos. Sci. Technol., 67, No. 3-4, 646-661 (2007).

    Article  CAS  Google Scholar 

  6. S. S. Rao, Engineering Optimization: Theory and Practice, 4 ed., John Wiley & Sons, Hoboken—New Jersey (2009).

  7. Z. Gurdal, R. T. Haftka, and P. Hajela, Design and Optimization of Laminated Composite Materials, John Wiley & Sons, New York—Chichester—Weinheim—Brisbane—Singapore—Toronto (1999).

  8. K. K. Sairajan and P. S. Nair, “Design of low mass dimensionally stable composite base structure for a spacecraft,” Compos., Part B, Eng., 42, 280-288 (2011).

  9. Z. Zhang, W. Zhong, and H. Song, “Design of hybrid composites with zero coefficient of thermal expansion,” J. Mater. Sci. Technol., 12, 241-248 (1996).

    Google Scholar 

  10. L. Aydin, O. Aydin, H. S. Artem, and A. Mert, “Design of dimensionally stable composites using efficient global optimization method,” Proc. I. Mech. E, Part L: J. Materials: Design and Applications, 233, No. 2, 156-168 (2019).

  11. R. A. Haynes and E. A. Armanios, “The challenge of achieving hygrothermal stability in composite laminates with optimal couplings,” Int. J. Eng. Sci., 3, 1-9 (2012).

    Google Scholar 

  12. J. Li and D. Li, “Extension-shear coupled laminates with immunity to hygro-thermal shearing distortion,” Compos. Struct., 123, 401-407 (2015).

    Article  Google Scholar 

  13. C. B. York, “On extension-shearing coupled laminates,” Compos. Struct., 120, 472-482 (2015).

    Article  Google Scholar 

  14. D. Cui and D. Li, “Optimization of extension-shear coupled laminates based on Differential Evolution algorithm,” Mech. Compos. Mater., 54, No. 6, 799-814 (2019).

    Article  Google Scholar 

  15. D. Cui and D. Li, “Bending-twisting coupled structures based on composite laminates with extension-shear coupling effect,” Compos. Struct., 209, No. 1, 434-442 (2019).

    Article  CAS  Google Scholar 

  16. The Mathworks, Inc. MATLAB computer software in version R2008b.

  17. A. K. Kaw, Mechanics of Composite Materials, 2 ed., CRC Press Taylor & Francis Group, Boca Raton—London—New York (2006).

  18. J. L. Pelletier and S. S. Vel, “Multiobjective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass,” Comput. Struct., 84, 2065-2080 (2006).

    Article  Google Scholar 

  19. M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization, John Wiley & Sons, New York—Chichester—Weinheim—Brisbane—Singapore—Toronto (2000).

  20. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Trans. Evol. Comput., 6, No. 2, 182-197 (2002).

    Article  Google Scholar 

  21. A. Kamaloo, M. Jabbari, M. Y. Tooski, and M. Javadi, “Optimization of thickness and delamination growth in composite laminates under multi-axial fatigue loading using NSGA-II,” Compos., Part B, Eng., 174, 106936 (2019).

  22. N. Srinivas and K. Deb, “Multiobjective function optimization using nondominated sorting genetic algorithms,” Evol. Comput., 2, No. 3, 221-248 (1995).

    Article  Google Scholar 

  23. S. Qu, J. Zhao, and T. Wang, “Experimental study and machining parameter optimization in milling thin-walled plates based on NSGA-II,” Int. J. Adv. Manuf. Technol., 89, 2399-2409 (2017).

    Article  Google Scholar 

  24. R. Ilka, Y. Alinejad-Beromi, and H. Yaghobi, “Cogging torque reduction of permanent magnet synchronous motor using multiobjective optimization,” Math. Comput. Simulat., 153, 83-95 (2018).

    Article  Google Scholar 

  25. N. S. Hamzehkolaei, M. Miri, and M. Rashki, “New simulation-based frameworks for multiobjective reliability-based design optimization of structures,” Appl. Math. Model., 62, 1-20 (2018).

    Article  Google Scholar 

  26. L. Aydin and H. S. Artem, “Multiobjective genetic algorithm optimization of the composite laminates as a satellite structure material for coefficient of thermal expansion and elastic modulus,” 4th International Conference on Recent Advances in Space Technologies, RAST ’09, Istanbul, 11–13 June 2009, 114-119.

  27. R. Le Riche and J. Gaudin, “Design of dimensionally stable composites by evolutionary optimization,” Compos. Struct., 41, No. 2, 97-111 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Aydin.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 57, No. 3, pp. 457-480, May-June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, L., Artem, H.S. & Deveci, H.A. Single- and Multiobjective Optimizations of Dimensionally Stable Composites Using Genetic Algorithms. Mech Compos Mater 57, 321–336 (2021). https://doi.org/10.1007/s11029-021-09957-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09957-y

Keywords

Navigation