Skip to main content
Log in

Twist measurement based on dual-wavelength ratio for helical long-period grating

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Twist measurement based on the transmission of fixed wavelength of a helical long-period fiber grating is studied. The single-mode fiber is spiraled by a welding machine. There are two resonance dips near 1473 nm and 1517 nm, with the pitch length around 782 μm. The experimental results show that the transmission near 1473 nm decreases along with contra-direction twist and increases along with co-direction twist. In contrast, the transmission near 1517 nm decreases along with co-direction twist and increases along with contra-direction twist. The relationships between the twist and the resonance wavelength, the twist and the transmission of resonance dips, the twist and the transmission of fixed wavelengths are studied, respectively. They all show linear relationship with the twist, and the slopes are about 100 nm·mm/rad, 36 dB·mm/rad, and 46 dB·mm/rad, respectively. The dual-wavelength ratio is studied, and the ratio also shows linear relationship with the twist. The twist sensitivity of I1463.3 nm/I1526.5 nm is about 0.79 each 0.01 rad/mm. This has great potential application in twist sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R C Hochberg IEEE. T. Instrum. Meas. 35 4 (1986)

  2. Y J Rao, Y P Wang, Z L Ran and T Zhu J. Lightwave. Tecnol. 21 1320 (2003)

  3. V I Kopp, V M Churikov, J Singer, N Chao, D Neugroschl and A Z Genack Science. 305 74 (2004)

    Article  ADS  Google Scholar 

  4. B Lee Opt. Fiber Technol. 9 57 (2003)

  5. X D Wang and O S Wolfbeis Anal. Chem. 88 203 (2016)

    Article  Google Scholar 

  6. C K Y Leung et al. Mater. Struct. 48 871 (2015)

  7. R Xu, A Yurkewich and A R Patel IEEE. Robot. Autom. Let. 1 1052 (2016)

  8. W Shin, B A Yu, Y C Noh, J Lee and D K Ko Opt. Lett. 32 1214 (2007)

    Article  ADS  Google Scholar 

  9. V M Churikov, V I Kopp and A Z Genack Opt. Lett. 35 342 (2010)

  10. G K L Wong et al. Science. 337 446 (2012)

  11. R Gao, Y Jiang and L Jiang Opt. Express. 22 15697 (2014)

    Article  ADS  Google Scholar 

  12. L Zhang, Y Liu and Y Zhao IEEE Photonic. Tech. l. 28 1629 (2016)

    Article  ADS  Google Scholar 

  13. S Bing, W Wei, C Liao, Z Lin, Z Zhang, MY Chen and Y Wang IEEE. Photonic. Tech. L. 29 873 (2017)

  14. C C Xu, C Jiang and Y Q Liu Appl. Opt. 59 3086 (2020)

    Article  ADS  Google Scholar 

  15. P Wang and H Li Appl. Opt. 55 1430 (2016)

    Article  ADS  Google Scholar 

  16. H Jung, W Shin, J K Kim, S H Park, D K Ko, J Lee and K Oh IEEE. Photonic. Tech. L. 21 1232 (2009)

  17. Y F Bai, Z L He, J Y Bai and S H Dang IEEE Sensors. Letters. 4 11 (2020)

    Google Scholar 

  18. V I Kopp et al. J. Opt. Soc. Am. b. 24 A48 (2007)

    Article  ADS  Google Scholar 

  19. L L Xian, P Wang and H P Li Opt. Express. 22 20260 (2014)

  20. Y Zhang et al. Opt. Lett. 44 61 (2019)

    Article  ADS  Google Scholar 

  21. C L Fu, Y P Wang, Z Y Bai, S Liu, Y Zhang and Z L Li Opt. Lett. 44 459 (2019)

    Article  ADS  Google Scholar 

  22. H L Zhang et al. Opt. Express 26 544 (2018)

    Article  ADS  Google Scholar 

  23. O V Ivanov J. Opt. Soc. Am. 22 716 (2005)

  24. G Shvets, S Trendafilov, V Kopp, D Neugroschl and A Genack J. Opt. A-Pure. Appl. Op. 11 074007 (2009)

  25. L Shi, Z Tao, YE Fan, KS Chiang and Y Rao Opt. Commu. 284 5299 (2011)

  26. L Zhang, Y Q Liu, Y H Zhao and T Y Wang IEEE Photonic. Tech. l. 28 1 (2016)

    Article  ADS  Google Scholar 

  27. T Erdogan J. Lightwave. Technol. 15 1277 (1997)

  28. T Erdogan J. Opt. Soc. Am. A. 14 1760 (1997)

Download references

Acknowledgements

The work is support by the Science and Technology Research Program of Chongqing Education Commission of China (KJQN20200142) and (KJZDM202001401). University Innovation Research Group of Shale Gas Optical Fiber Intelligent Sensing Technology (CXQT20027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfeng Bai or Suihu Dang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., He, Z. & Dang, S. Twist measurement based on dual-wavelength ratio for helical long-period grating. Indian J Phys 96, 2525–2529 (2022). https://doi.org/10.1007/s12648-021-02177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02177-z

Keywords

Navigation