Skip to main content
Log in

Chlorophyllin Competitive Effect on DNA-Binding Ligands

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effect of chlorophyllin on the binding of proflavine, doxorubicin, ethidium bromide, and berberine to DNA was studied by spectrophotometric titration. Titration data were analyzed using a multivariate curve resolution–alternating least squares method (MCR–ALS). Pure spectra of all absorbing species in the systems and their concentration profiles were obtained. Chlorophyllin was shown to form complexes with all studied ligands. The equilibrium constants for complexation of the ligands with chlorophyllin and DNA were obtained in binary (ligand–chlorophyllin and ligand–DNA) and ternary systems (ligand–chlorophyllin–DNA). The number of ligand molecules bound to DNA was observed to decrease in the presence of chlorophyllin. The main reason for this effect was heteroassociation because the calculated complexation constants of the ligands with DNA and chlorophyllin were similar. Theoretical isotherms of ligands binding to DNA in the ternary systems were compared to those obtained directly from decomposition data to test for the existence of other mechanisms for chlorophyllin competition. It was shown that consideration of only heteroassociation of the ligands with chlorophyllin (interceptor mechanism) was adequate to describe the experimental isotherms. Chlorophyllin did not exhibit protective properties in the studied ternary systems; consequently, chlorophyllin did not interact with DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Galasso, A. Gentile, I. Orefice, A. Ianora, A. Bruno, D. M. Noonan, C. Sansone, A. Albini, and C. Brunet, Nutrients, 11, No. 6, 1226 (2019).

    Article  Google Scholar 

  2. E. Wang, M. S. Braun, and M. Wink, Molecules, 24, No. 16, 2968 (2019).

    Article  Google Scholar 

  3. D. K. Deda, B. A. Iglesias, E. Alves, K. Araki, and C. R. S. Garcia, Molecules, 25, No. 9, 2080 (2020).

    Article  Google Scholar 

  4. B. Grimm, R. J. Porra, W. Rudiger, and H. Scheer (Eds.), Chlorophylls and Bacteriochlorophylls. Biochemistry, Biophysics, Functions and Applications, Springer, Dordrecht (2006), p. 603.

  5. K. Solymosi and B. Mysliwa-Kurdziel, Mini-Rev. Med. Chem., 17, No. 13, 1194–1222 (2017).

    Google Scholar 

  6. S. Arimoto-Kobayashi, N. Harada, R. Tokunaga, J. Odo, and H. Hayatsu, Mutat. Res., 381, No. 2, 243–249 (1997).

    Article  Google Scholar 

  7. H. Hayatsu, C. Sugiyama, S. Arimoto-Kobayashi, and T. Negishi, Cancer Lett., 143, No. 2, 185–187 (1999).

    Article  Google Scholar 

  8. S. Arimoto, S. Fukuoka, C. Itome, H. Nakano, H. Rai, and H. Hayatsu, Mutat. Res., 287, No. 2, 293–305 (1993).

    Article  Google Scholar 

  9. S. Nagini, F. Palitti, and A. T. Natarajan, Nutr. Cancer, 67, No. 2, 203–211 (2015).

    Article  Google Scholar 

  10. M. Pietrzak, Z. Wieczorek, J. Wieczorek, and Z. Darzynkiewicz, Biophys. Chem., 123, 11–19 (2006).

    Article  Google Scholar 

  11. M. Pietrzak, Z. Wieczorek, A. Stachelska, and Z. Darzynkiewicz, Biophys. Chem., 104, No. 1, 305–313 (2003).

    Article  Google Scholar 

  12. M. Pietrzak, H. D. Halicka, Z. Wieczorek, J. Wieczorek, and Z. Darzynkiewicz, Biophys. Chem., 135, 69–75 (2008).

    Article  Google Scholar 

  13. J. Hernaez, M. Xu, and R. Dashwood, Environ. Mol. Mutagen., 30, No. 4, 468–474 (1997).

    Article  Google Scholar 

  14. C. E. Schwab, W. W. Huber, W. Parzefall, G. Hietsch, F. Kassie, R. Schulte-Hermann, and S. Knasmuller, Crit. Rev. Toxicol., 30, No. 1, 1–69 (2000).

    Article  Google Scholar 

  15. P. A. Egner, A. Munoz, and T. W. Kensler, Mutat. Res., 523524, 209–216 (2003).

  16. A. S. Buchelnikov, A. A. Hernandez Santiago, M. Gonzalez Flores, R. Vazquez Ramirez, D. B. Davies, and M. P. Evstigneev, Eur. Biophys. J., 41, 273–283 (2012).

    Article  Google Scholar 

  17. J. F. Neault and H. A. Tajmir-Riahi, Biophys. J., 76, 2177–2182 (1999).

    Article  Google Scholar 

  18. A. A. Herus, N. A. Gladkovskaya, E. G. Bereznyak, and E. V. Dukhopelnikov, Biophys. Bull., 36, No. 2, 43–50 (2016).

    Google Scholar 

  19. M. Deiana, K. Matczyszyn, J. Massin, J. Olesiak-Banska, C. Andraud, and M. Samoc, PLoS One, 10, No. 7, e0133814 (2015).

    Article  Google Scholar 

  20. E. Dukhopelnykov, E. Bereznyak, N. Gladkovskaya, A. Skuratovska, and D. Krivonos, Spectrochim. Acta, Part A, 247, 119114 (2021).

  21. M. Mirzaei, M. Khayat, and A. Saeidi, Sci. Iran., 19, No. 3, 561–564 (2012).

    Article  Google Scholar 

  22. J. Ghasemi, Sh. Ahmadi, A. I. Ahmad, and S. Ghobadi, Appl. Biochem. Biotechnol., 149, No. 1, 9–22 (2008).

    Article  Google Scholar 

  23. Y. Ni, Y. Wang, and S. Kokot, Electroanalysis, 22, No. 19, 2216–2224 (2010).

    Article  Google Scholar 

  24. M. Tao, G. Zhang, Ch. Xiong, and J. Pan, New J. Chem., 39, No. 5, 3665–3674 (2015).

    Article  Google Scholar 

  25. K. H. Esbensen, D. Guyot, F. Westad, and L. P. Houmoller, Multivariate Data Analysis. In Practice: an Introduction to Multivariate Data Analysis and Experimental Design, 5th edn., CAMO, Oslo, Norway (2002), p. 598.

    Google Scholar 

  26. F. Barcelo, D. Capo, and J. Portugal, Nucleic Acids Res., 30, No. 20, 4567–4573 (2002).

    Article  Google Scholar 

  27. M. Dourlent and C. Helene, Eur. J. Biochem., 23, No. 1, 86–95 (1971).

    Article  Google Scholar 

  28. D. Bhowmik, S. Das, M. Hossain, L. Haq, and G. S. Kumar, PLoS One, 7, No. 5, e37939 (2012).

    Article  ADS  Google Scholar 

  29. M. Airoldi, G. Barone, G. Gennaro, A. M. Giuliani, and M. Giustini, Biochemistry, 53, No. 13, 2197–2207 (2014).

    Article  Google Scholar 

  30. S. A. Winkle, L. S. Rosenberg, and T. R. Krugh, Nucleic Acids Res., 10, No. 24, 8211–8223 (1982).

    Article  Google Scholar 

  31. C. R. Cantor and P. R. Schimmel, Biophysical Chemistry: Part III: The Behavior of Biological Macromolecules, W. H. Freeman, San Francisco (1980), p. 597.

    Google Scholar 

  32. J. D. McGhee and P. H. von Hippel, J. Mol. Biol., 86, No. 2, 469–489 (1974).

    Article  Google Scholar 

  33. V. G. Gumenyuk, N. V. Bashmakova, S. Yu. Kutovyy, V. M. Yashchuk, and L. A. Zaika, Ukr. J. Phys., 56, No. 2, 524–533 (2011).

    Google Scholar 

  34. X. L. Li, Y. J. Hu, H. Wang, B. Q. Yu, and H. L. Yue, Biomacromolecules, 13, No. 3, 873–880 (2012).

    Article  Google Scholar 

  35. W. Muller and D. M. Crothers, Eur. J. Biochem., 54, No. 1, 267–277 (1975).

    Article  Google Scholar 

  36. L. A. Tavadyan, S. H. Minasyan, G. H. Kocharyan, A. P. Antonyan, V. G. Sahakyan, M. A. Parsadanyan, and P. O. Vardevanyan, Biophys. Rev. Lett., 12, No. 3, 1–11 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Skuratovska.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 3, pp. 437–445, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skuratovska, A.A., Bereznyak, E.G., Gladkovskaya, N.A. et al. Chlorophyllin Competitive Effect on DNA-Binding Ligands. J Appl Spectrosc 88, 557–564 (2021). https://doi.org/10.1007/s10812-021-01209-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01209-0

Keywords

Navigation