Skip to main content

Advertisement

Log in

Numerical Study of Physical and Biogeochemical Processes Controlling Dissolved Oxygen in an Urbanized Subtropical Estuary: Vitória Island Estuarine System, Brazil

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Subtropical estuaries such as the Vitória Island Estuarine System (VIES), located on the central coast of Brazil, are under strong anthropic pressure. Poor water quality is one of the impacts usually caused by the discharge of untreated effluents into the estuary. The purpose of this study is to understand the stress to which the VIES water quality is subjected, evaluating the dissolved oxygen (DO) balance, as well as the physical and biogeochemical processes that govern it. The computational fluid dynamics technique was used. The continuity and Reynolds-averaged Navier–Stokes equations are vertically integrated and solved numerically by the finite difference method in an orthogonal curvilinear grid. A similar procedure is performed for the advection–diffusion-reaction equation for scalar parameters such as temperature, salinity, oxygen, nutrients, and others. The results of the numerical simulations show that the main DO reduction process is mineralization. Reaeration and ocean water contributed positively to the increase in DO. As the movement of water is governed mainly by the astronomical tide, the critical moments for water quality occur in the quadrature, with less dispersion of the constituents due to lower velocities and lower dilution. In the regions of the main channel, near the Itanguá River and the Costa Channel, the largest degradations of water quality are found. Point sources had less spatial influence, with changes in DO observed only near the discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable for that section.

Code Availability

The numerical model source code is available at: https://oss.deltares.nl/web/delft3d/source-code.

References

  1. Altieri, A. H., & Diaz, R. J. (2019). Dead zones: Oxygen depletion in coastal ecosystems. In C. Sheppard (Ed.), World Seas: an Environmental Evaluation. Ecological issues and environmental impacts (Second Edi., pp. 453–473). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-805052-1.00021-8

  2. Nixon, S. W. (1995). Costal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 41, 199–219.

    Article  Google Scholar 

  3. Wen, Y., Schoups, G., & Van De Giesen, N. (2017). Organic pollution of rivers : Combined threats of urbanization, livestock farming and global climate change. Science and Reports, 7(January), 1–9. https://doi.org/10.1038/srep43289

    Article  CAS  Google Scholar 

  4. Sinha, E., Michalak, A. M., & Balaji, V. (2017). Eutrophication will increase during the 21st century as a result of precipitation changes. Science (Vol. 357).

  5. Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926–929. https://doi.org/10.1126/science.1156401

    Article  CAS  Google Scholar 

  6. Levin, L. A., & Breitburg, D. L. (2015). Linking coasts and seas to address ocean deoxygenation. Nature Climate Change, 5(5), 401–403. https://doi.org/10.1038/nclimate2595

    Article  Google Scholar 

  7. Rabalais, N. N., Diaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., & Zhang, J. (2010). Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7, 585–619.

    Article  CAS  Google Scholar 

  8. Ehrlich, H. L., & Newman, D. K. (2009). Geomicrobiology. https://doi.org/10.1007/978-0-8493-7906-2

    Article  Google Scholar 

  9. Berounsky, V. M., & Nixon, S. W. (1993). Rates of nitrification along an estuarine gradient in Narragansett Bay. Estuaries, 16(4), 718. https://doi.org/10.2307/1352430

    Article  CAS  Google Scholar 

  10. Diegues, A. C. (1999). Human populations and coastal wetlands: Conservation and management in Brazil. Ocean and Coastal Management, 42(2–4), 187–210. https://doi.org/10.1016/S0964-5691(98)00053-2

    Article  Google Scholar 

  11. Hadlich, H. L., Venturini, N., Martins, C. C., Hatje, V., Tinelli, P., de Oliveira Gomes, L. E., & Bernardino, A. F. (2018). Multiple biogeochemical indicators of environmental quality in tropical estuaries reveal contrasting conservation opportunities. Ecological Indicators, 95(May), 21–31. https://doi.org/10.1016/j.ecolind.2018.07.027

    Article  CAS  Google Scholar 

  12. Varzim, C. S., Hadlich, H. L., Andrades, R., Mazzuco, A. C. D. A., & Bernardino, A. F. (2019). Tracing pollution in estuarine benthic organisms and its impacts on food webs of the Vitoria Bay estuary. Estuarine, Coastal and Shelf Science, 229(October), 106410. https://doi.org/10.1016/j.ecss.2019.106410

    Article  CAS  Google Scholar 

  13. Nascimento, T., Chacaltana, J., & Piccoli, F. (2016). Análise da Influência do Alargamento de um Estreitamento na Hidrodinâmica do Canal da Passagem, Vitória-ES, Através de Modelagem Numérica. Revista Brasileira de Recursos Hídricos, 18(3), 31–39. https://doi.org/10.21168/rbrh.v18n3.p31-39

  14. Barros, M. L. C., Rosman, P. C. C., Telles, J. C. F., & Azevedo, J. P. S. (2011). A simple wetting and drying method for shallow water flow with application in the Vitória Bay estuary, Brazil. WIT Transactions on Ecology and the Environment, 145, 215–225. https://doi.org/10.2495/WRM110181

    Article  Google Scholar 

  15. Garonce, F. A. A., & Quaresma, V. S. (2014). Hydrodynamic aspects at Vitória Bay Mouth, ES. Anais da Academia Brasileira de Ciencias, 86(2), 555–570. https://doi.org/10.1590/0001-37652014114012

    Article  Google Scholar 

  16. Neves, R. C., Quaresma, V. S., Bastos, A. C., & Da Silva, J. C. R. (2012). Sedimentary transport in coastal bays: Case study of Vitória and Espírito Santo Bays – ES – Brazil. Revista Brasileira de Geofísica, 30, 181–189.

    Article  Google Scholar 

  17. De Jesus, H. C., De Abreu Costa, E., Ferreira Mendonça, A. S., & Zandonade, E. (2004). Distribuição de metais pesados em sedimentos do sistema estuarino da ilha de Vitória-es. Quimica Nova, 27(3), 378–386. https://doi.org/10.1590/S0100-40422004000300004

    Article  Google Scholar 

  18. Kumar, V., Sinha, A. K., Rodrigues, P. P., Mubiana, V. K., Blust, R., & De Boeck, G. (2015). Linking environmental heavy metal concentrations and salinity gradients with metal accumulation and their effects: A case study in 3 mussel species of Vitória estuary and Espírito Santo bay, Southeast Brazil. Science of the Total Environment, 523(2015), 1–15. https://doi.org/10.1016/j.scitotenv.2015.03.139

    Article  CAS  Google Scholar 

  19. Grilo, C. F., Neto, R. R., Vicente, M. A., de Castro, E. V. R., Figueira, R. C. L., & Carreira, R. S. (2013). Evaluation of the influence of urbanization processes using mangrove and fecal markers in recent organic matter in a tropical tidal flat estuary. Applied Geochemistry, 38, 82–91. https://doi.org/10.1016/j.apgeochem.2013.08.009

    Article  CAS  Google Scholar 

  20. Morais, A. C. (2008). Estimativa de cargas poluidoras na baía de vitória com uso de sistemas de informações geográficas e sensoriamento remoto. (Doctoral dissertation). Environmental Engineering Department, Federal University of Espírito Santo, Vitória, ES.

  21. Cassini, P. S. (2011). Aplicação do modelo EPA-Aquatox à Baía de Vitória (Vitória/ES). (Master’s thesis). Environmental Engineering Department, Federal University of Espírito Santo, Vitória, ES.

  22. Deltares. (2019). Delft3D-FLOW User Manual Version 3.15 - Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. The Netherlands.

  23. Verboom, G. K., & Slob, A. (1984). Weakly-reflective boundary conditions for two- dimensional shallow water flow problems. Adv. Water Resources, 7(June 1984), 192–197. https://doi.org/10.1016/0309-1708(84)90018-6

  24. Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183–204. https://doi.org/10.1175/1520-0426(2002)019%3c0183:EIMOBO%3e2.0.CO;2

    Article  Google Scholar 

  25. Large, W. G., & Pond, S. (1981). Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography. https://doi.org/10.1175/1520-0485(1981)011%3c0324:OOMFMI%3e2.0.CO;2

    Article  Google Scholar 

  26. Smith, S. D., & Banke, E. G. (1975). Variation of the sea surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorological Society, 101(429), 665–673. https://doi.org/10.1002/qj.49710142920

    Article  Google Scholar 

  27. van Rijn, L. C. (2007). Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport. Journal of Hydraulic Engineering, 133(6), 649–667. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:7(776)

  28. Veronez, P., Bastos, A. C., & Quaresma, V. S. (2009). Morfologia e distribuição sedimentar em um sistema estuarino tropical: Baía de Vitória. ES. Revista Brasileira de Geofisica, 27(4), 609–624. https://doi.org/10.1590/S0102-261X2009000400006

    Article  Google Scholar 

  29. Deltares. (2019). D-Water Quality User Manual Version 5.06 - Versatile Water Quality Modeling in 1D, 2D or 3D systems including physical, (bio)chemical and biological processes. The Netherlands.

  30. O’Connor, D. J., & Dobbins, W. E. (1956). The mechanics of reaeration in natural streams. Journal of the Sanitary Engineering Division, 82(6), 1–30.

    Article  Google Scholar 

  31. Banks, R. B., & Herrera, F. F. (1977). Effect of wind and rain on surface reaeration. Journal of the Environmental Engineering Division, 103(3), 489–504.

    Article  CAS  Google Scholar 

  32. Millero, F. J. (1995). Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 59(4), 661–677.

    Article  CAS  Google Scholar 

  33. Yin, Y., Karunarathna, H., & Reeve, D. E. (2019). Numerical modelling of hydrodynamic and morphodynamic response of a meso-tidal estuary inlet to the impacts of global climate variabilities. Marine Geology, 407(March 2018), 229–247. https://doi.org/10.1016/j.margeo.2018.11.005

  34. Veerapaga, N., Azhikodan, G., Shintani, T., Iwamoto, N., & Yokoyama, K. (2019). A three-dimensional environmental hydrodynamic model, Fantom-Refined: Validation and application for saltwater intrusion in a meso-macrotidal estuary. Ocean Modelling, 141(August), 101425. https://doi.org/10.1016/j.ocemod.2019.101425

    Article  Google Scholar 

  35. Orseau, S., Huybrechts, N., Tassi, P., Pham Van Bang, D., & Klein, F. (2020). Two-dimensional modeling of fine sediment transport with mixed sediment and consolidation: Application to the Gironde Estuary, France. International Journal of Sediment Research, (xxxx). https://doi.org/10.1016/j.ijsrc.2019.12.005

  36. El-Adawy, A., Negm, A. M., Saavedra, O. C., Nadaoka, K., & El-Shinnawy, I. A. (2014). Coupled hydrodynamic-water quality model for pollution control scenarios in El-Burullus Lake (Nile delta, Egypt). American Journal of Environmental Sciences, 10(6), 546–565. https://doi.org/10.3844/ajessp.2014.546.565

    Article  CAS  Google Scholar 

  37. Beusen, A. H. W., Bouwman, A. F., Van Beek, L. P. H., Mogollón, J. M., & Middelburg, J. J. (2016). Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences, 13(8), 2441–2451. https://doi.org/10.5194/bg-13-2441-2016

    Article  CAS  Google Scholar 

  38. Castro, M. S., Driscoll, C. T., Jordan, T. E., Reay, W. G., & Boynton, W. R. (2003). Sources of nitrogen to estuaries in the United States. Estuaries, 26(3), 803–814. https://doi.org/10.1007/BF02711991

    Article  CAS  Google Scholar 

  39. Rabalais, N. N., Turner, R. E., & Wiseman, W. J. (2002). Gulf of Mexico hypoxia, a.k.a. “The dead zone.” Annual Review of Ecology and Systematics, 33, 235–263. https://doi.org/10.1146/annurev.ecolsys.33.010802.150513

    Article  Google Scholar 

  40. Nam, S. E., Haque, M. N., Lee, J. S., Park, H. S., & Rhee, J. S. (2020). Prolonged exposure to hypoxia inhibits the growth of Pacific abalone by modulating innate immunity and oxidative status. Aquatic Toxicology, 227(August), 105596. https://doi.org/10.1016/j.aquatox.2020.105596

    Article  CAS  Google Scholar 

  41. Jager, H. I., Novello, R. C., Dale, V. H., Villnas, A., & Rose, K. A. (2018). Unnatural hypoxic regimes. Ecosphere, 9(9). https://doi.org/10.1002/ecs2.2408

  42. Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O., & Huey, R. B. (2015). Constraint on Marine Habitats. Science, 348(6239), 1132–1136.

    Article  CAS  Google Scholar 

  43. Patterson, H. K., & Carmichael, R. H. (2018). Dissolved oxygen concentration affects δ 15 N values in oyster tissues: Implications for stable isotope ecology. Ecosphere, 9(3), e02154. https://doi.org/10.1002/ecs2.2154

    Article  Google Scholar 

  44. Seitzinger, S. P., Kroeze, C., Bouwman, A. F., Caraco, N., Dentener, F., & Styles, R. V. (2002). Global patters of dissolbed inorganic and particulate nitrogen inputs to coastal systems: Recent conditions and future projections. Estuaries, 25(4b), 640–655.

    Article  CAS  Google Scholar 

  45. Kroeze, C., & Seitzinger, S. P. (1998). Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050: A global model. Nutrient Cycling in Agroecosystems, 52, 195–212. https://doi.org/10.1023/A:1009780608708

    Article  CAS  Google Scholar 

  46. Bianchi, T. S. (2007). Biogeochemistry of Estuaries. Eos, Transactions American Geophysical Union (Vol. 88). https://doi.org/10.1029/2007EO520011

  47. Eddy, F. B. (2005). Ammonia in estuaries and effects on fish. Journal of Fish Biology, 67(6), 1495–1513. https://doi.org/10.1111/j.1095-8649.2005.00930.x

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Author 1: Franciane Entringer Curbani: Conceived and designed the analysis; organized the database; performed the computer simulations of hydrodynamics and water quality; performed the statistical analysis; performed the analysis and discussion of the results; made the figures; wrote the paper. Author 2: Kaio Calmon Lacerda: Conceived and designed the analysis; organized the database; performed the computer simulations of hydrodynamics; performed the analysis and discussion of the results; made the figures; wrote the paper. Author 3: Flávio Curbani: Conceived and designed the analysis; performed the analysis and discussion of the results; made the figures; wrote the paper. Author 4: Fernando Túlio Camilo Barreto: Conceived and designed the analysis; organized the database; performed the computer simulations of hydrodynamics; performed the analysis and discussion of the results; made the figures; wrote the paper. Author 5: Carlos Eduardo Tadokoro: Conceived and designed the analysis; performed the analysis and discussion of the results; performed the text analysis. Author 6: Julio Tomás Aquije Chacaltana: Conceived and designed the analysis; performed the analysis; performed analysis and discussion of the results; wrote the paper; performed the text analysis.

Corresponding author

Correspondence to Franciane Entringer Curbani.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curbani, F.E., Lacerda, K.C., Curbani, F. et al. Numerical Study of Physical and Biogeochemical Processes Controlling Dissolved Oxygen in an Urbanized Subtropical Estuary: Vitória Island Estuarine System, Brazil. Environ Model Assess 27, 233–249 (2022). https://doi.org/10.1007/s10666-021-09787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-021-09787-1

Keywords

Navigation