Skip to main content

Advertisement

Log in

Effects of combined soil amendments on Cd accumulation, translocation and food safety in rice: a field study in southern China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Excessive Cd content and high Cd/Zn ratio in rice grains threaten human health. To study the reduction effects of combined soil amendments on Cd content and Cd/Zn ratio in rice planting in soils with different Cd contamination levels, we conducted field trials in three regions of Hunan province, China. Six field treatments were designed in each study area, including control (CK), lime alone (L), lime combined with sepiolite (LS), phosphate fertilizer (LP), organic fertilizer (LO) and phosphate fertilizer + organic fertilizer (LPO). The application of the combined amendments reduced the Cd content in rice grains to less than the Food Health Standard of China (0.2 mg/kg) and the Cd/Zn ratio to less than the safety threshold of 0.015. The average reduction rates of grain Cd content under the combined treatments among the three regions increased with the increase in Cd content in the soil. Meanwhile, the amendments also decreased the soil available Cd and Zn concentration significantly. The LO had the highest efficiency on decreasing Cd content in rice grains among these amendments, which is ranged from 44.6% to 52.8% in the three regions compared with CK. Similarly, high reduction rates of Cd/Zn ratio were found in the LO treatment, with an average value of 57.3% among the three regions. The grain Cd contents and Cd/Zn ratios were significantly correlated with the soil available Cd concentrations, plant uptake factor and the straw to rice grain translocation factor (TFgs) (P < 0.05). The results indicated that the combined soil amendments, especially lime combined with organic fertilizer, would be an effective way to control Cd content in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Most of the data generated or analyzed during this study are included in this published article and its supplementary information files. The rest of the raw data cannot be shared at this time as the data form the part of an ongoing study.

References

  • Adil, F., Sehar, S., Chen, G., Chen, Z. H., & Shamsi, I. H. (2019). Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological/ultrastructural adjustments. Ecotoxicology and Environmental Safety, 190, 110076.

    Article  CAS  Google Scholar 

  • Ai, C., Liang, G. Q., Sun, J. W., He, P., Tang, S. H., Yang, S. H., Zhou, W., & Wang, X. B. (2015). The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Biology and Fertility of Soils., 51, 465–477.

    Article  CAS  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., & Scheckel, K. (2014). Remediation of heavy metal(-loid)s contaminated soil—to mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166.

    Article  CAS  Google Scholar 

  • Bossolani, J. W., Crusciol, C. A. C., Moretti, L. F., Moretti, L. G., Costa, N. R., Tsai, S. M., & Kuramae, E. E. (2020). Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system. Geoderma., 375, 114476.

    Article  CAS  Google Scholar 

  • Cao, X. R., Wang, X. Z., Tong, W. B., Gurajalaa, H. K., Lu, M., Hamid, Y., Feng, Y., He, Z. L., & Yang, X. E. (2019). Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environmental Pollution, 252, 733–741.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Reeves, P. G., Ryan, J. A., Simmons, R. W., Welch, R. M., & Angle, J. S. (2004). An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. BioMetals, 17, 549–553.

    Article  CAS  Google Scholar 

  • Chen, H., Guo, H., Li, R., Li, L., Pan, G., Chang, A., & Joseph, S. (2016). Low uptake affinity cultivars with biochar to tackle Cd-tainted rice - A field study over four rice seasons in Hunan, China. Science of the Total Environment., 541, 1489–1498.

    Article  CAS  Google Scholar 

  • Chen, D., Ye, X., Zhang, Q., Xiao, W., Ni, Z., Yang, L., Zhao, S., Hu, J., Gao, N., & Huang, M. (2020). The effect of sepiolite application on rice Cd uptake - a two-year field study in southern China. Journal of Environmental Management, 254, 109788.1-109788.6.

    Article  CAS  Google Scholar 

  • China’s Ministry of Environmental Protection. (2014). National Soil Pollution Survey Bulletin. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.

  • Deforest, J. L., Dorkoski, R., Freedman, Z. B., & Smemo, K. A. (2021). Multi-year soil microbial and extracellular phosphorus enzyme response to lime and phosphate addition in temperate hardwood forests. Plant and Soil., 464, 1–14.

    Article  CAS  Google Scholar 

  • Drasch, G., Schöpfer, J., & Schrauzer, G. N. (2005). Selenium/cadmium ratios in human prostates. Biological Trace Element Research, 103, 103–107.

    Article  CAS  Google Scholar 

  • Du, Y., Wang, X., Ji, X., Zhang, Z., Saha, U. K., Xie, W., Xie, Y., Wu, J., Peng, B., & Tan, C. (2018). Effectiveness and potential risk of CaO application in Cd-contaminated paddy soil. Chemosphere, 204, 130–139.

    Article  CAS  Google Scholar 

  • Du, B., Zhou, J., Zhang, C., Lu, B., & Zhang, H. (2020). Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China. Science of the Total Environment, 720, 137585.

    Article  CAS  Google Scholar 

  • Duan, M. M., Wang, S., Huang, D. Y., Zhu, H. Q., Liu, S. L., Zhang, Q., Zhu, H. H., & Xu, C. (2018). Effectiveness of simultaneous applications of lime and zinc/iron foliar sprays to minimize cadmium accumulation in rice. Ecotoxicology and Environmental Safety, 165(15), 510–515.

    Article  CAS  Google Scholar 

  • Feng, W., Guo, Z., Peng, C., Xiao, X., Shi, L., Han, X., & Ran, H. (2018). Modelling mass balance of cadmium in paddy soils under long term control scenarios. Environmental Science: Processes & Impacts, 20, 1158–1166.

    CAS  Google Scholar 

  • Feng, W. L., Guo, Z. H., Peng, C., Xiao, X. Y., Shi, L., Zeng, P., Ran, H. Z., & Xue, Q. H. (2019). Atmospheric bulk deposition of heavy metal(loid)s in central south china: Fluxes, influencing factors and implication for paddy soils. Journal of Hazardous Materials, 371, 634–642.

    Article  CAS  Google Scholar 

  • Fontanili, L., Lancilli, C., Suzui, N., Dendena, B., Yin, Y. G., Ferri, A., Ishii, S., Kawachi, N., Giorgio, L., Fujimaki, S., Sacchi, G. A., & Nocito, F. F. (2016). Kinetic analysis of zinc/cadmium reciprocal competitions suggests a possible Zn-insensitive pathway for root-to-shoot cadmium translocation in rice. Rice., 9, 16.

    Article  Google Scholar 

  • Gao, L., Chang, J., Chen, R., Li, H., Lu, H., Tao, L., & Xiong, J. (2016). Comparison on cellular mechanisms of iron and cadmium accumulation in rice: Prospects for cultivating Fe-rich but Cd-free rice. Rice, 9, 39.

    Article  Google Scholar 

  • Gong, L., Wang, J., Abbas, T., Zhang, Q., & Di, H. (2021). Immobilization of exchangeable Cd in soil using mixed amendment and its effect on soil microbial communities under paddy upland rotation system. Chemosphere, 262, 127828.

    Article  CAS  Google Scholar 

  • Hamid, Y., Tang, L., Lu, M., Hussain, B., Zehra, A., Khan, M. B., Gurajala, H. K., & Yang, X. E. (2019). Assessing the immobilization efficiency of organic and inorganic amendments for cadmium phytoavailability to wheat. Journal of Soils and Sediments, 19, 3708–3717.

    Article  CAS  Google Scholar 

  • He, Y. B., Huang, D. Y. H., Zhu, Q. H. Z., Wang, S., Liu, S. L., He, H. B., Zhu, H. H. Z., & Xu, C. (2017). A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar. Ecotoxicology and Environmental Safety , 136, 135–141.

    Article  CAS  Google Scholar 

  • Huang, S., Rao, G., Ashraf, U., He, L., Zhang, Z., Zhang, H., Mo, Z., Pan, S., & Tang, X. (2020). Application of inorganic passivators reduced Cd contents in brown rice in oilseed rape-rice rotation under Cd contaminated soil. Chemosphere., 259, 127404.

    Article  CAS  Google Scholar 

  • Jiang, Z., Guo, Z., Peng, C., Liu, X., & Xiao, X. (2021). Heavy metals in soils around non-ferrous smelteries in China: status, health risks and control measures. Environmental Pollution, 282, 117038.

    Article  CAS  Google Scholar 

  • Jihen, E. H., Imed, M., Fatima, H., & Abdelhamid, K. (2008). Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver and kidney of the rat: Histology and Cd accumulation. Food and Chemical Toxicology, 46, 3522–3527.

    Article  CAS  Google Scholar 

  • Kong, L. L., Guo, Z. H., Peng, C., Xiao, X. Y., & He, Y. L. (2021). Factors influencing the effectiveness of liming on cadmium reduction in rice: A meta-analysis and decision tree analysis. Science of the Total Environment, 779, 146477.

    Article  CAS  Google Scholar 

  • Kostov, O., & Cleemput, O. V. (2001). Microbial activity of Cu contaminated soils and effect of lime and compost on soil resiliency. Compost Science & Utilization., 9(4), 336–351.

    Article  Google Scholar 

  • Lauricella, D., Butterly, C. R., Weng, H., Clark, G. J., & Tang, C. (2021). Impact of novel materials on alkalinity movement down acid soil profiles when combined with lime. Journal of Soils and Sediments, 21, 52–62.

    Article  CAS  Google Scholar 

  • Li, H., Luo, N., Li, Y. W., Cai, Q. Y., Li, H. Y., Mo, C. H., & Wong, M. H. (2017). Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environmental Pollution, 224, 622–630.

    Article  CAS  Google Scholar 

  • Li, B., Yang, L., Wang, C. Q., Zheng, S. Q., Xiao, R., & Guo, Y. (2019). Effects of organic-inorganic amendments on the cadmium fraction in soil and its accumulation in rice (Oryza sativa L.). Environmental Science and Pollution Research International, 26, 13762–13772.

    Article  CAS  Google Scholar 

  • Lim, J. E., Ahmad, M., Sang, S. L., Shope, C. L., Hashimoto, Y., Kim, K. R., Usman, A. R A., Yang, J. E., & Ok, E. S. (2013). Effects of lime-based waste materials on immobilization and phytoavailability of cadmium and lead in contaminated soil. CLEAN - Soil Air Water, 41(12), 1235–1241.

    Article  CAS  Google Scholar 

  • Lonergan, Z. R., & Skaar, E. P. (2019). Nutrient zinc at the host–pathogen interface. Trends in Biochemical Sciences, 44, 1041–1056.

    Article  CAS  Google Scholar 

  • Lu, R. K. (2000). Soil agricultural chemistry analysis methods. Agricultural Technology Press. (in Chinese).

    Google Scholar 

  • Lu, C., Zhang, L., Tang, Z., Huang, X. Y., Ma, J. F., & Zhao, F. J. (2019). Producing cadmium-free indica rice by overexpressing OSHMA3. Environment International, 126, 619–626.

    Article  CAS  Google Scholar 

  • Luo, W., Yang, S., Khan, M. A., Ma, J., & Liu, D. (2020). Mitigation of Cd accumulation in rice with water management and calcium-magnesium phosphate fertilizer in field environment. Environmental Geochemistry and Health, 42, 3877–3886.

    Article  CAS  Google Scholar 

  • Mao, C., Song, Y., Chen, L., Ji, J., Li, J., Yuan, X., Yang, Z., Ayokoe, G. A., Frost, R. L., & Theisse, F. (2019). Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. CATENA, 175, 339–348.

    Article  CAS  Google Scholar 

  • Meng, L., Huang, T., Shi, J., Chen, J., Zhong, F., Wu, L., & Xu, J. (2019). Decreasing cadmium uptake of rice (Oryza sativa L.) in the cadmium-contaminated paddy field through different cultivars coupling with appropriate soil amendments. Journal of Soils and Sediments, 19, 1788–1798.

    Article  CAS  Google Scholar 

  • Nordberg, G. F. (2009). Historical perspectives on cadmium toxicology. Toxicology and Applied Pharmacology, 238(3), 192–200.

    Article  CAS  Google Scholar 

  • Pérez-Esteban, J., Escolástico, C., Moliner, A., Masaguer, A., & Ruiz-Fernández, J. (2014). Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments. Plant and Soil, 377, 97–109.

    Article  CAS  Google Scholar 

  • Reeves, P. G., & Chaney, R. L. (2004). Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodenum and other organs of rats fed rice-based diets. Environmental Research, 96, 311–322.

    Article  CAS  Google Scholar 

  • Rzymski, P., Rzymski, P., Tomczyk, K., Poniedziałek, B., & Wilczak, M. (2015). Impact of heavy metals on the female reproductive system. Annals of Agricultural and Environmental Medicine, 22(2), 259–264.

    Article  CAS  Google Scholar 

  • Sauvé, S., Hendershot, W., & Allen, H. E. (2000). Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environmental Science and Technology, 34(7), 1125–1131.

    Article  CAS  Google Scholar 

  • Sebastian, A., & Prasad, M. (2014). Cadmium minimization in rice: A review. Agronomy for Sustainable Development, 34(1), 155–173.

    Article  CAS  Google Scholar 

  • Shao, J. F., Xia, J., Yamaji, N., Shen, R. F., & Ma, J. F. (2018). Effective reduction of cadmium accumulation in rice grain by expressing OSHMA3 under the control of the OSHMA2 promoter. Journal of Experimental Botany, 69(10), 2743–2752.

    Article  CAS  Google Scholar 

  • Shi, L., Guo, Z. H., Peng, C., Xiao, X. Y., Feng, W. L., Huang, B., & Ran, H. Z. (2019). Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: A four-season field experiment. Ecotoxicology and Environmental Safety, 171, 425–434.

    Article  CAS  Google Scholar 

  • Simmons, R. W., Pongsakul, P., Chaney, R. L., Saiyasitpanich, D., Klinphoklap, S., & Nobuntou, W. (2003). The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean: Implications for human health. Plant and Soil, 257, 163–170.

    Article  CAS  Google Scholar 

  • Stoltz, E., & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47(3), 271–280.

    Article  CAS  Google Scholar 

  • Sun, Y., Sun, G., Xu, Y., Liu, W., Liang, X., & Wang, L. (2016). Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils. Journal of Environmental Management, 166, 204–210.

    Article  CAS  Google Scholar 

  • Tian, S. Q., Liang, S., Qiao, K., Wang, F. H., Zhang, Y. X., & Chai, T. Y. (2019). Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa L). Journal of Hazardous Materials, 380, 120853.

  • Tyler, G., & Olsson, T. (2001). Plant uptake of major and minor mineral elements as influenced by soil acidity and liming. Plant and Soil, 230, 307–321.

    Article  CAS  Google Scholar 

  • Wang, M., Chen, W., & Peng, C. (2016). Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China. Chemosphere, 144, 346–351.

    Article  CAS  Google Scholar 

  • Wang, M. E., Yang, Y., & Chen, W. P. (2018). Manganese, zinc, and pH affect cadmium accumulation in rice grain under field conditions in southern China. Journal of Environmental Quality, 47(2), 306.

    Article  CAS  Google Scholar 

  • Wang, Y., Liu, Y., Zhan, W., Zheng, K., & Li, T. (2020). Long-term stabilization of Cd in agricultural soil using mercapto-functionalized nano-silica (MPTS/nano-silica): A three-year field study. Ecotoxicology and Environmental Safety., 197, 110600.

    Article  CAS  Google Scholar 

  • Wang, Y., Liu, Y., Zhan, W., Niu, L., & Ruan, X. (2020b). A field experiment on stabilization of Cd in contaminated soils by surface-modified nano-silica (SMNS) and its phyto-availability to corn and wheat. Journal of Soils and Sediments, 20(1), 91–98.

    Article  CAS  Google Scholar 

  • Wang, Y. F., Ying, Y. Q., & Lu, S. G. (2020c). Si-Ca-F-Mg amendment reduces the phytoavailability and transfer of Cd from acidic soil to rice grain. Environmental Science and Pollution Research, 27, 33248–33258.

    Article  CAS  Google Scholar 

  • Williams, P. N., Lei, M., Sun, G., Huang, Q., Lu, Y., Deacon, C., Meharg, A. A., & Zhu, Y. G. (2009). Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environmental Science & Technology, 43, 637–642.

    Article  CAS  Google Scholar 

  • Xiao, R., Huang, Z., Li, X., Chen, W., Deng, Y., & Han, C. (2017). Lime and phosphate amendment can significantly reduce uptake of Cd and Pb by field-grown rice. Sustainability., 9, 430.

    Article  CAS  Google Scholar 

  • Yang, Y., Xiong, J., Chen, R., Fu, G., Chen, T., & Tao, L. (2016). Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environmental and Experimental Botany, 122, 141–149.

    Article  CAS  Google Scholar 

  • Yang, Y., Wang, M., Chen, W., Li, Y., & Peng, C. (2017). Cadmium accumulation risk in vegetables and rice in southern China: Insights from solid-solution partitioning and plant uptake factor. Journal of Agriculture and Food Chemistry, 65(27), 5463–5469.

    Article  CAS  Google Scholar 

  • Ye, X., Ma, Y., & Sun, B. (2012). Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety. Acta Scientiae Circumstantiae, 24, 1647–1654.

    CAS  Google Scholar 

  • Yuan, P., Wang, J., Pan, Y., Shen, B., & Wu, C. (2019). Review of biochar for the management of contaminated soil: Preparation, application and prospect - sciencedirect. Science of the Total Environment, 659, 473–490.

    Article  CAS  Google Scholar 

  • Zare, A. A., Khoshgoftarmanesh, A. H., Malakouti, M. J., Bahrami, H. A., & Chaney, R. L. (2018). Root uptake and shoot accumulation of cadmium by lettuce at various Cd: Zn ratios in nutrient solution. Ecotoxicology and Environmental Safety, 148, 441–446.

    Article  CAS  Google Scholar 

  • Zeng, P., Guo, Z., Xiao, X., Peng, C., Feng, W., Xin, L., & Xu, Z. (2018). Phytoextraction potential of Pteris vittata l. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Science of the Total Environment, 650, 594–603.

    Article  CAS  Google Scholar 

  • Zhang, L. Y., Li, L. Q., & Pan, G. X. (2009). Variation of Cd, Zn and Se contents of polished rice and the potential health risk for subsistence-diet farmers from typical areas of south China. Journal of Environmental Sciences., 30, 2792.

    Google Scholar 

  • Zhang, Z., Zhang, N., Li, H., Lu, Y., & Yang, Z. (2020). Potential health risk assessment for inhabitants posed by heavy metals in rice in Zijiang River basin, Hunan province, China. Environmental Science and Pollution Research, 27(19), 24013–24024.

    Article  CAS  Google Scholar 

  • Zheng, R., Chen, Z., Cai, C., Tie, B., Liu, X., Reid, B. J., Huang, Q., Lei, M., Sun, G., & Baltrėnaitė, E. (2015). Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment - a field experiment in Hunan, China. Environmental Science and Pollution Research International, 22, 11097–11108.

    Article  CAS  Google Scholar 

  • Zhu, H., Chen, C., Xu, C., Zhu, Q., & Huang, D. (2016). Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environmental Pollution, 219, 99–106.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (Grant No. 41771532) and National Key R&D Program of China (Grant No. 2018YFC1800400).

Author information

Authors and Affiliations

Authors

Contributions

LS was responsible for experiment design, conducting experiments, statistical processing and writing. ZG performed experiment design and conceptualization. SL performed methodology, revision and editing. XX was involved in revision and editing. CP was responsible for conceptualization, experiment design, funding acquisition and revision. WF and HR were responsible for conducting experiment and data curation. PZ was involved in experiment and discussion.

Corresponding author

Correspondence to Chi Peng.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

It is not applicable since the manuscript has not been involved in the use of any animal or human data or tissue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Guo, Z., Liu, S. et al. Effects of combined soil amendments on Cd accumulation, translocation and food safety in rice: a field study in southern China. Environ Geochem Health 44, 2451–2463 (2022). https://doi.org/10.1007/s10653-021-01033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01033-7

Keywords

Navigation