Skip to main content
Log in

From innovation to obfuscation: continuous time finance fifty years later

  • Perspectives
  • Published:
Financial Markets and Portfolio Management Aims and scope Submit manuscript

Abstract

This paper surveys several of the most important applications of the continuous time finance paradigm in portfolio selection and derivatives pricing. While it recognizes the powerful insights that the paradigm offered to researchers and practitioners, it finds that several methodological approaches that it introduced have themselves hardened into paradigms and become dysfunctional. They have downgraded and neglected significant real-world problems because of their inability to model them, or adopted simplifications that had little relevance to the problems that they were supposed to solve. The paper then offers in all cases an alternative methodology that can reach the desired solution via rigorous economic and mathematical reasoning, by replacing mathematical elegance with numerical estimations and approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See the Foreword by Samuelson and the Preface in Merton (1992), as well as Bachelier’s mathematical antecedents in Veisdal (2019).

  2. See The Black Swan by Nassim Taleb (2010, pp. 277–285).

  3. See their Eq. (12) in p. 4266, which holds only for a frictionless market.

  4. The values for both \(b_{T}\) and \(v_{T}\) are averages over the 4 days preceding the start of the maturity period.

  5. See, for instance, Bates (1991, 2006), Pan (2002), Liu et al (2005).

  6. An example of such an empirical SD application is Constantinides et al. (2020), that uses the observable bias-adjusted VIX index to estimate the P distribution at every time point.

  7. A colorful way of stating this indeterminacy of the “true” option price is in one of the earliest empirical option market studies by Rubinstein (1985, p. 465).

  8. See in p. 1968 of Christoffersen et al (2013), where the risk neutral parameter \(\vartheta ^{*}\) in our notation should exceed \(\vartheta\), while the estimated values in Tables 4 and 5 show \(\vartheta > \vartheta ^{*}\).

  9. In real-life such a replication would not be feasible in the presence of market frictions, but this cannot be invoked to explain the frictionless market results.

  10. This also applies to the Beare and Schmidt (2016) study, who derived a kernel that violated monotonicity in several dates in their sample, but relied for their derivation on a technical paper by Monteiro et al. (2008), that implicitly assumed option market efficiency.

  11. The material here borrows heavily from Perrakis (2017), Perrakis (2019, Chapter 3).

  12. A different type of friction was introduced by Leippold and Su (2015), who considered margin costs and different borrowing and lending rates in otherwise frictionless trading of both underlying and options, which preserves the replication property but creates bounds that do not admit put-call parity. Since their proofs are based on replication, they cannot be extended to conventional trading frictions. In principle SD can be extended to admit margins and differential borrowing and lending rates, but this has not been attempted yet and may present challenges.

  13. This assumption can be easily relaxed when dealing with American options, as analyzed in detail in Chapter 4 of Perrakis (2019). For the empirically important cases where the dividends accrue to the bond account and for normal parameter values it can be shown that including the dividends in the risky asset yields a very close approximation to the optimal policies; see Czerwonko and Perrakis (2016b).

  14. The results extend routinely to the case that consumption occurs at each trading date and utility is defined over consumption at each of the trading dates and over the net worth at the terminal date.

  15. If utility is defined only for non-negative net worth, then the decision variable is constrained to be a member of a convex set that ensures the non-negativity of the net worth.

References

  • Ait-Sahalia, Y., Andrew Lo, W.: Nonparametric risk management and implied risk aversion. J. Econom. 94, 9–51 (2000)

    Article  Google Scholar 

  • Amin, K.I., Ng, V.K.: Option valuation with systematic stochastic volatility. J. Finance 48, 881–909 (1993)

    Article  Google Scholar 

  • Andersen, T.G., Fusari, N., Todorov, V.: Short-term market risks implied by weekly options. J. Finance 72, 1335–1386 (2017)

    Article  Google Scholar 

  • Arvanitis, S., Post, T., Topaloglou, N.: Stochastic bounds for reference sets in Portfolio analysis. Manag. Sci. (2021). https://doi.org/10.1287/mnsc.2020.3838. (Forthcoming)

    Article  Google Scholar 

  • Babaoglou, K., Christoffersen, P., Heston, S., Jacobs, K.: Option valuation with volatiklity components, fat tails and non-monotonic pricing kernels. Rev. Asset. Pric. Stud. 8, 183–231 (2018)

    Article  Google Scholar 

  • Bachelier, L., 1900, “Théorie de la Spéculation”, translated and presented in Cootner (1964).

  • Bakshi, G., Cao, C., Chen, Z.: Empirical performance of alternative option pricing models. J. Finance 52, 2003–2049 (1997)

    Article  Google Scholar 

  • Bakshi, G.S., Madan, D., Panayotov, G.: Returns of claims on the upside and the viability of U-shaped pricing kernels. J. Financ. Econ. 97, 130–154 (2010)

    Article  Google Scholar 

  • Barone-Adesi, G., Engle, R.F., Mancini, L.: A GARCH option pricing model with filtered historical simulation. Rev. Financ. Stud. 21, 1223–1258 (2008)

    Article  Google Scholar 

  • Bates, D.S.: The crash of ’87: was it expected? The evidence from option markets. J. Finance 46, 1009–1044 (1991)

    Article  Google Scholar 

  • Bates, D.S.: Empirical option pricing: a retrospection. J. Econom. 116, 387–404 (2003)

    Article  Google Scholar 

  • Bates, D.S.: Maximum likelihood estimation of latent affine processes. Rev. Finan. Stud. 19, 909–965 (2006)

    Article  Google Scholar 

  • Beare, B.K.: Measure preserving derivatives and the pricing kernel puzzle. J. Math. Econ. 47, 689–697 (2011)

    Article  Google Scholar 

  • Beare, B.K., Schmidt, L.D.W.: An empirical test of pricing kernel monotonicity. J. Appl. Econom. 31, 338–356 (2016)

    Article  Google Scholar 

  • Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Article  Google Scholar 

  • Bliss, R., Panigirtzoglou, N.: Option-implied risk aversion estimates. J. Finance 59, 407–446 (2004)

    Article  Google Scholar 

  • Bollen, N., Whaley, R.: Does net buying pressure affect the shape of implied volatility functions? J. Finance 59, 711–753 (2004)

    Article  Google Scholar 

  • Bondarenko, O.: Statistical arbitrage and securities prices. Rev. Financ. Stud. 16, 875–919 (2003)

    Article  Google Scholar 

  • Bondarenko, O.: Why are put options so expensive? Q. J. Finance 4, 145–195 (2014)

    Article  Google Scholar 

  • Branger, N., Schlag, C.: Why is the index smile so steep? Rev. Finance 8, 109–127 (2003)

    Article  Google Scholar 

  • Broadie, M., Chernov, M., Johannes, M.: Model specification and risk premia: evidence from futures options. J. Finance 62, 1453–1490 (2007)

    Article  Google Scholar 

  • Broadie, M., Chernov, M., Johannes, M.: Understanding index option returns. Rev. Financ. Stud. 22, 493–529 (2009)

    Article  Google Scholar 

  • Brown, D.P., Jackwerrth, J.: The pricing kernel puzzle: reconciling index option data and economic theory. In: Batten, J., Wagner, N. (eds.) Derivative Securities Pricing and Modelling. Emerald, Bradford (2012)

    Google Scholar 

  • Carr, P., Wu, L.: Variance risk premiums. Rev. Financ. Stud. 22, 1311–1341 (2009)

    Article  Google Scholar 

  • Chabi-Yo, F., Garcia, R., Renault, E.: State dependence can explain the risk aversion puzzle. Rev. Financ. Stud. 21, 973–1011 (2008)

    Article  Google Scholar 

  • Chambers, D.R., Foy, M., Liebner, J., Lu, Q.: Index option returns: still puzzling. Rev. Financ. Stud. 27, 1915–1928 (2014)

    Article  Google Scholar 

  • Chen, H., Joslin, S., Ni, S.: Deman for crash insurance, intermediary constrains, and risk premia in financial markets. Rev. Financ. Stud. 32, 228–265 (2019)

    Article  Google Scholar 

  • Christoffersen, P., Heston, S.L., Jacobs, K.: Capturing option anomalies with a variance-dependent pricing kernel. Rev. Financ. Stud. 26, 1963–2006 (2013)

    Article  Google Scholar 

  • Christoffersen, P., Jacobs, K., Orthanalai, C.: Dynamic jump intensities and risk premiums. J. Financ. Econ. 106, 447–472 (2012)

    Article  Google Scholar 

  • Constantinides, G.M.: Multiperiod consumption and investment behavior with convex transactions costs. Manag. Sci. 25, 1127–1137 (1979)

    Article  Google Scholar 

  • Constantinides, G.M.: Capital market equilibrium with transaction costs. J. Polit. Econ. 94, 842–862 (1986)

    Article  Google Scholar 

  • Constantinides, G.M., Czerwonko, M., Perrakis, S.: Mispriced option portfolios. Financ. Manag. 49(2), 297–330 (2020)

    Article  Google Scholar 

  • Constantinides, G.M., Czerwonko, M., Jackwerth, J.C., Perrakis, S.: Are options on index futures profitable for risk averse investors? Empirical evidence. J. Finance 66, 1407–1437 (2011)

    Article  Google Scholar 

  • Constantinides, G.M., Jackwerth, J.C., Perrakis, S.: Mispricing of S&P 500 index options. Rev. Financ. Stud. 22, 1247–1277 (2009)

    Article  Google Scholar 

  • Constantinides, G.M., Perrakis, S.: Stochastic dominance bounds on derivatives prices in a multiperiod economy with proportional transaction costs. J. Econ. Dyn. Control 26, 1323–1352 (2002)

    Article  Google Scholar 

  • Constantinides, G.M., Perrakis, S.: Stochastic dominance bounds on American option prices in markets with frictions. Rev. Finance 11, 71–115 (2007)

    Article  Google Scholar 

  • Cootner, P.H. (ed.): The Random Character of Stock Market Prices. MIT Press, Cambridge (1964)

    Google Scholar 

  • Czerwonko, M., Perrakis, S.: Portfolio selection with transaction costs and jump-diffusion asset dynamics I: a numerical solution. Q. J. Finance 6(4), 1650018 (2016)

    Article  Google Scholar 

  • Czerwonko, M., Perrakis, S.: Portfolio selection with transaction costs and jump-diffusion asset dynamics II: economic implications. Quarterly Journal of Finance 6(4), 1650019 (2016)

    Article  Google Scholar 

  • Czerwonko, M., Perrakis, S.: “Index Option Anomalies: How Real Are They?. Working Paper available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3278037 (2018)

  • Davidson, R., Duclos, J.-Y.: Testing for restricted stochastic dominance. Econom. Rev. 32, 84–125 (2013)

    Article  Google Scholar 

  • Driessen, J., Maenhout, P.J.: An empirical portfolio perspective on option pricing anomalies. Rev. Finance 11, 561–603 (2007)

    Article  Google Scholar 

  • Duan, J.-C.: The GARCH option pricing model. Math. Financ. 5, 13–32 (1995)

    Article  Google Scholar 

  • Duan, J.-C., Ritchken, P., Sun, Z.: Approximating jump-GARCH models, jump diffusion processes and option pricing. Math. Financ. 16, 21–52 (2006)

    Article  Google Scholar 

  • Dybvig, P.: Distributional analysis of Portfolio choice. J. Bus. 63, 369–393 (1988)

    Article  Google Scholar 

  • Eraker, B., Johannes, M., Polson, N.: The impact of jumps in volatility and returns. J. Finance 58, 1269–1300 (2003)

    Article  Google Scholar 

  • Garleanu, N., Pedersen, L.H., Poteshman, A.M.: Demand based option pricing. Rev. Financ. Stud. 22, 4259–4299 (2009)

    Article  Google Scholar 

  • Ghanbari, H., Oancea, M., Perrakis, S.: Shedding light in a dark matter: jump-diffusion and option-implied investor preferences. Eur. Financ. Manag. 27, 244–286 (2021)

    Article  Google Scholar 

  • Heston, S.L.: A closed-form solution for options with stochastic volatility, with applications to bond and currency options. Rev. Financ. Stud. 6, 327–344 (1993)

    Article  Google Scholar 

  • Heston, S.L., Nandi, S.: A closed-form GARCH option valuation model. Rev. Financ. Stud. 13, 585–625 (2000)

    Article  Google Scholar 

  • Jackwerth, J.C.: Recovering risk aversion from option prices and realized returns. Rev. Financ. Stud. 13, 433–451 (2000)

    Article  Google Scholar 

  • Jackwerth, J.C., Rubinstein, M.: Recovering probability distributions from option prices. J. Finance 51, 1611–1631 (1996)

    Article  Google Scholar 

  • Jiang, G.J., Tian, Y.: The model-free implied volatility and its information content. Rev. Financ. Stud. 18, 1305–1342 (2005)

    Article  Google Scholar 

  • Jones, C.: The dynamics of stochastic volatility: evidence from underlying and options markets. J. Econom. 116, 181–224 (2003)

    Article  Google Scholar 

  • Jouini, E., Kallal, H.: Martingales and arbitrage in securities markets with transaction costs. J. Econ. Theory 66, 178–197 (1995)

    Article  Google Scholar 

  • Koopmans, T.: Measurement without theory. Rev. Econ. Stat. 29, 161–172 (1947)

    Article  Google Scholar 

  • Kryzanowski, L., Perrakis, S., Zhong, R.: Financial oligopolies: theory and empirical evidence from the Credit Default Swap Markets. J. Financ. Mark. (2021). https://doi.org/10.1016/j.finmar.2020.100606. (Forthcoming)

    Article  Google Scholar 

  • Leippold, M., Su, L.: Collateral smile. J. Bank. Finance 58, 15–28 (2015)

    Article  Google Scholar 

  • Levy, H.: Upper and lower bounds of put and call option value: stochastic dominance approach. J. Finance 40, 1197–1217 (1985)

    Article  Google Scholar 

  • Linn, M., Shive, S., Shumway, T.: Pricing kernel monotonicity and conditional information. Rev. Financ. Stud. 31, 493–531 (2018)

    Article  Google Scholar 

  • Liu, H., Longstaff, F., Pan, J.: Dynamic asset allocation with event risk. J. Finance 58, 231–259 (2003)

    Article  Google Scholar 

  • Liu, J., Pan, J., Wang, T.: An equilibrium model of rare event premia and its implications for option smirks. Rev. Financ. Stud. 18, 131–164 (2005)

    Article  Google Scholar 

  • Merton, R.C.: Lifetime Portfolio selection under uncertainty: the continuous time case. Rev. Econ. Stat. 51, 247–257 (1969)

    Article  Google Scholar 

  • Merton, R.C.: Optimum consumption and Protfolio rules in a continuous-time model. J. Econ. Theory 3, 373–413 (1971)

    Article  Google Scholar 

  • Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4, 141–184 (1973)

    Article  Google Scholar 

  • Merton, R.C.: Option pricing when the underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)

    Article  Google Scholar 

  • Merton, R.C.: Continuous-Time Finance. Basil Blackwell, Cambridge (1992)

    Google Scholar 

  • Monteiro, A., Tϋtϋncϋ, R., Vicente, L.: Recovering risk-neutral probability density functions from option prices using cubic splines and insuring non-negativity. Eur. J. Oper. Res. 187, 525–542 (2008)

    Article  Google Scholar 

  • Naik, V., Lee, M.: General equilibrium pricing of options on the market Portfolio with discontinuous returns. Rev. Financ. Stud. 3, 493–521 (1990)

    Article  Google Scholar 

  • Oancea, I.M., Perrakis, S.: From stochastic dominance to black-scholes: an alternative option pricing paradigm. Risk Decis. Anal. 5, 99–112 (2014)

    Article  Google Scholar 

  • Orthanalai, C.: Levy jump risk: evidence from options and returns. J. Financ. Econ. 112, 69–90 (2014)

    Article  Google Scholar 

  • Pan, J.: The jump-risk premia implicit in options: evidence from an integrated time series study. J. Financ. Econ. 63, 3–50 (2002)

    Article  Google Scholar 

  • Perrakis, S.: Option bounds in discrete time: extensions and the pricing of the American Put. J. Bus. 59, 119–141 (1986)

    Article  Google Scholar 

  • Perrakis, S.: Transaction costs and option prices. Risk Decis. Anal. 6, 241–248 (2017)

    Article  Google Scholar 

  • Perrakis, S.: Stochastic Dominance Option Pricing: an Alternative Approach to Option Market Research. Palgrave-MacMillan (2019)

    Book  Google Scholar 

  • Perrakis, S., Ryan, P.J.: Option pricing bounds in discrete time. J. Finance 39, 519–525 (1984)

    Article  Google Scholar 

  • Post, T., Longarela, I.: Stochastic arbitrage opportunities for stock index options. Oper. Res. (2018). https://doi.org/10.2139/ssrn.3174068. (Forthcoming)

    Article  Google Scholar 

  • Ritchken, P.H.: On option pricing bounds. J. Finance 40, 1219–1233 (1985)

    Article  Google Scholar 

  • Ritchken, P.H., Kuo, S.: Option bounds with finite revision opportunities. J. Finance 43, 301–308 (1988)

    Article  Google Scholar 

  • Rosenberg, J.V., Engle, R.F.: Empirical pricing kernels. J. Financ. Econ. 64, 341–372 (2002)

    Article  Google Scholar 

  • Rubinstein, M.: Nonparametric tests of alternative option pricing models using all reported trades and quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 Through August 31, 1978. J. Finance 40, 455–480 (1985)

    Article  Google Scholar 

  • Rubinstein, M.: Implied binomial trees. J. Finance 49, 771–818 (1994)

    Article  Google Scholar 

  • Samuelson, P.A.: Rational theory of warrant pricing. Ind. Manag. Rev. 6, 13–31 (1965a)

    Google Scholar 

  • Samuelson, P.A.: Proof that properly anticipated prices fluctuate randomly. Ind. Manag. Rev. 6, 13–31 (1965b)

    Google Scholar 

  • Santa-Clara, P., Saretto, A.: Option strategies: good deals and margin calls. J. Financ. Mark. 12, 391–417 (2009)

    Article  Google Scholar 

  • Taleb, N.: The Black Swan. Random House, NY (2010)

    Google Scholar 

  • Veisdal, Jørgen, 2019, “Brownian Motion in Financial Markets”, Cantor’s Paradise, August 12, 2019, available at https://medium.com/cantors-paradise/brownian-motion-in-financial-markets-ea5f02204b14.

  • Wiggins, J.: Option values under stochastic volatility: theory and empirical estimates. J. Financ. Econ. 5, 351–372 (1987)

    Article  Google Scholar 

  • Ziegler, A.: Why does implied risk aversion smile? Rev. Financ. Stud. 20(3), 859–904 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

I thank George Constantinides, Michal Czerwonko and Thierry Post for their valuable comments and support in writing this essay. I also thank the editor Markus Schmid and two anonymous referees for helpful advice and comment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos Perrakis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RBC Distinguished Professor of Derivatives, Concordia University. I wish to thank George Constantinides, Michal Czerwonko and Thierry Post for their valuable comments and support in writing this essay. I also thank the editor and two anonymous referees for helpful advice and comment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrakis, S. From innovation to obfuscation: continuous time finance fifty years later. Financ Mark Portf Manag 36, 369–401 (2022). https://doi.org/10.1007/s11408-021-00399-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11408-021-00399-z

Keywords

JEL Classification

Navigation