Skip to main content
Log in

High Temperature Oxidation Kinetics of Shot-Peened and Laser-Shock Peened Ti-Beta-21S

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Isothermal oxidation tests of mechanically treated Ti-Beta-21S (TIMET, Ti–15Mo–3Nb–3Al–2Si, ASTM Grade 21) were performed under dry air at 650, 700 and 750 °C for 100 h and compared to untreated samples. Two different mechanical surface treatments were used: ultrasonic shot-peening (SP) and laser-shock peening (LSP). The study investigates the effect of both treatments on the oxidation kinetics of the process and the role of atmospheric nitrogen insertion. With this aim, oxidation experiments were also performed under pure oxygen. The results show that the oxidation is governed by diffusion after a short transient time. Both SP and LSP treatments improve the high temperature oxidation resistance of Ti-Beta-21S in dry air, but not in pure oxygen. The formation of a nitrogen-enriched layer at the oxide–metal interface, which is promoted by the mechanical surface treatments, explains the increase in the oxidation resistance in air by slowing down the diffusion of oxygen into the metal.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. C. Williams and E. A. Starke, Acta Materialia 51, 2003 (5775).

    Article  CAS  Google Scholar 

  2. L. Raceanu, V. Optasanu, T. Montesin, G. Montay, and M. François, Oxidation of Metals 79, 2013 (135).

    Article  CAS  Google Scholar 

  3. A. Kanjer, et al., Surface and Coatings Technology 343, 2018 (93).

    Article  CAS  Google Scholar 

  4. A. Kanjer, et al., Oxidation of Metals 88, 2017 (383).

    Article  CAS  Google Scholar 

  5. A. Kanjer, et al., Surface and Coatings Technology 326, 2017 (146).

    Article  CAS  Google Scholar 

  6. L. Lavisse, et al., Surface and Coating Technology 403, 2020 (126368).

    Article  CAS  Google Scholar 

  7. L. Lavisse et al., in Proceedings of the 14th World Conference on Titanium, 321, 2020, p. 04001.

  8. C. Dupressoire, et al., Oxidation of Metals 87, 2017 (343).

    Article  CAS  Google Scholar 

  9. M. Berthaud, et al., Corrosion Science 164, 2020 (108049).

    Article  CAS  Google Scholar 

  10. D. Monceau and B. Pieraggi, Oxidation of Metals 50, 1998 (477).

    Article  CAS  Google Scholar 

  11. P. Peyre, R. Fabbro, P. Merrien, and H. P. Lieurade, Materials Science and Engineering A 210, 1996 (102).

    Article  Google Scholar 

  12. T. A. Wallace, R. K. Clark, and K. E. Wiedemann, in NASA Technical Memorandum 104217, Hampton, VA (United States), Langley Res., 1992.

  13. A. Behera, et al., Journal of Materials Science 48, 2013 (6700).

    Article  CAS  Google Scholar 

  14. P. Kofstad, High Temperature Corrosion, (Elsevier, London, 1988).

    Google Scholar 

  15. A. M. Chaze and C. Coddet, Journal of the Less Common Metals 124, 1986 (73).

    Article  CAS  Google Scholar 

  16. S. M. Hassani-Gangaraj, A. Moridi, M. Guagliano, A. Ghidini, and M. Boniardi, International Journal of Fatigue 62, 2014 (67).

    Article  CAS  Google Scholar 

  17. O. Unal, E. Maleki, and R. Varol, Vacuum 150, 2018 (69).

    Article  CAS  Google Scholar 

  18. T. Tsuji, Journal of Nuclear Materials 247, 1997 (63).

    Article  CAS  Google Scholar 

  19. M. Wen, C. Wen, P. Hodgson, and Y. Li, Colloids and Surface B: Biointerfaces 114, 2014 (658).

    Article  Google Scholar 

  20. M. Wen, C. Wen, P. Hodgson, and Y. Li, Corrosion Science 59, 2012 (352).

    Article  CAS  Google Scholar 

  21. E. M. Gutmann, Mechanochemistry of Solid Surfaces, (World Scientific Pub. Co., Singapore, 1994).

    Book  Google Scholar 

  22. M. Dechamps, J. Desmaison, and P. Lefort, Journal of the Less Common Metals 71, 1980 (177).

    Article  CAS  Google Scholar 

  23. C. Zeng, H. Wen, B. Zhang, P. T. Sprunger, and S. M. Guo, Applied Surface Science 505, 2020 (144578).

    Article  CAS  Google Scholar 

  24. A. Antilla, J. Raisanen, and J. Keinonen, Applied Physics Letters 42, 1983 (498).

    Article  Google Scholar 

  25. D. David, G. Beranger, and E. A. Garcia, Journal of The Electrochemical Society 130, 1983 (423).

    Article  Google Scholar 

  26. Z. Liu and G. Welsch, Metallurgical Transactions A 19A, 1988 (1121).

    Article  CAS  Google Scholar 

  27. I. Abdallah, C. Dupressoire, L. Laffont, D. Monceau, and A. V. Put, Corrosion Science 153, 2019 (191).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge greatly Burgundy Regional Council (BRC) and the Agglomeration Council of Chalon City for their financial contribution in SEM at Chalon sur Saône, and the PIMM Laboratory (HESAM University) and the Charles Delaunay Institute (University of Technology of Troyes) for the mechanical treatments. This work was supported by the EIPHI Graduate School (Contract ANR17-EURE-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Optasanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Optasanu, V., de Lucas, M.C.M., Kanjer, A. et al. High Temperature Oxidation Kinetics of Shot-Peened and Laser-Shock Peened Ti-Beta-21S. Oxid Met 96, 257–270 (2021). https://doi.org/10.1007/s11085-021-10043-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10043-w

Keywords

Navigation