Skip to main content
Log in

Suppressive Activities of Fisetin on Particulate Matter-induced Oxidative Stress

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Exposure to high levels of atmospheric particulate matter (PM) with an aerodynamic diameter of less than 2.5 µm (PM2.5) causes respiratory injury mainly due to oxidative stress. Although the fisetin has biological activities such as the antiviral, neuroprotective, and anti-inflammatory activities, the effect of fisetin on PM-mediated oxidative damage has not been studied. In this study, we tested the protective effect of fisetin against PM2.5-induced toxicity in human pulmonary artery endothelial cells (HPAECs) and its molecular mechanism. Exposure to PM2.5 decreased cell viability in HPAECs in a time- and dose-dependent manner, possibly due to increased release of extracellular lactate dehydrogenase and generation of intracellular reactive oxygen species (ROS). Cell viability assay demonstrated that treatment of HPAECs with fisetin increased cell viability and reduced PM2.5-induced oxidative stress in a dose-dependent manner. Serum- and glucocorticoid-inducible kinase 1 (SGK1), a crucial cell survival factor, was downregulated by PM2.5 which was recovered by fisetin. Furthermore, fisetin treatment inhibited intracellular ROS in HPAECs generated by PM2.5. Moreover, decreased antioxidant enzymes activities of superoxide dismutase and catalase level in PM2.5-treated cells were reversed by fisetin treatment. Our results suggest that fisetin effectively protects human HPAECs from PM2.5-induced oxidative damage via antioxidant effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim, K. H., E. Kabir, and S. Kabir (2015) A review on the human health impact of airborne particulate matter. Environ. Int. 74: 136–143.

    Article  CAS  Google Scholar 

  2. Maier, K. L., F. Alessandrini, I. Beck-Speier, T. P. J. Hofer, S. Diabate, E. Bitterle, T. Stoger, T. Jakob, H. Behrendt, M. Horsch, J. Beckers, A. Ziesenis, L. Hultner, M. Frankenberger, S. Krauss-Etschmann, and H. Schulz (2008) Health effects of ambient particulate matter—biological mechanisms and inflammatory responses to in vitro and in vivo particle exposures. Inhal. Toxicol. 20: 319–337.

    Article  CAS  Google Scholar 

  3. Brunekreef, B. and S. T. Holgate (2002) Air pollution and health. Lancet. 360: 1233–1242.

    Article  CAS  Google Scholar 

  4. Liu, C. W., T. L. Lee, Y. C. Chen, C. J. Liang, S. H. Wang, J. H. Lue, J. S. Tsai, S. W. Lee, S. H. Chen, Y. F. Yang, T. Y. Chuang, and Y. L. Chen (2018) PM2.5-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-kappaB-dependent pathway. Part. Fibre. Toxicol. 15: 4.

    Article  Google Scholar 

  5. Park, H. J., B. T. Jeon, H. C. Kim, G. S. Roh, J. H. Shin, N. J. Sung, J. Han, and D. Kang (2012) Aged red garlic extract reduces lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages and acute pulmonary inflammation through haeme oxygenase-1 induction. Acta. Physiol. (Oxf). 205: 61–70.

    Article  CAS  Google Scholar 

  6. Persson, P. B. and A. B. Persson (2012) Age your garlic for longevity! Acta. Physiol. (Oxf). 205: 1–2.

    Article  CAS  Google Scholar 

  7. Middleton, E. Jr. and G. Drzewiecki (1984) Flavonoid inhibition of human basophil histamine release stimulated by various agents. Biochem. Pharmacol. 33: 3333–3338.

    Article  CAS  Google Scholar 

  8. Mukaida, N. (2000) Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int. J. Hematol. 72: 391–398.

    CAS  PubMed  Google Scholar 

  9. Hirano, T., S. Higa, J. Arimitsu, T. Naka, A. Ogata, Y. Shima, M. Fujimoto, T. Yamadori, T. Ohkawara, Y. Kuwabara, M. Kawai, H. Matsuda, M. Yoshikawa, N. Maezaki, T. Tanaka, I. Kawase, and T. Tanaka (2006) Luteolin, a flavonoid, inhibits AP-1 activation by basophils. Biochem. Biophys. Res. Commun. 340: 1–7.

    Article  CAS  Google Scholar 

  10. Bakay, M., I. Mucsi, I. Beladi, and M. Gabor (1968) Effect of flavonoids and related substances. II. Antiviral effect of quercetin, dihydroquercetin and dihydrofisetin. Acta Microbiol. Acad. Sci. Hung. 15: 223–227.

    CAS  PubMed  Google Scholar 

  11. Sung, B., M. K. Pandey, and B. B. Aggarwal (2007) Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol. Pharmacol. 71: 1703–1714.

    Article  CAS  Google Scholar 

  12. Akaishi, T., T. Morimoto, M. Shibao, S. Watanabe, K. Sakai-Kato, N. Utsunomiya-Tate, and K. Abe (2008) Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid beta protein. Neurosci. Lett. 444: 280–285.

    Article  CAS  Google Scholar 

  13. Kim, J. E., W. Lee, S. Yang, S. H. Cho, M. C. Baek, G. Y. Song, and J. S. Bae (2019) Suppressive effects of rare ginsenosides, Rk1 and Rg5, on HMGB1-mediated septic responses. Food Chem. Toxicol. 124: 45–53.

    Article  CAS  Google Scholar 

  14. Lee, B. S., C. Lee, S. Yang, S. K. Ku, and J. S. Bae (2019) Renal protective effects of zingerone in a mouse model of sepsis. BMB Rep. 52: 271–276.

    Article  CAS  Google Scholar 

  15. Bergvall, C. and R. Westerholm (2006) Determination of dibenzopyrenes in standard reference materials (SRM) 1649a, 1650, and 2975 using ultrasonically assisted extraction and LC-GC-MS. Anal. Bioanal. Chem. 384: 438–447.

    Article  CAS  Google Scholar 

  16. Lee, W., S. K. Ku, J. E. Kim, G. E. Cho, G. Y. Song, and J. S. Bae (2019) Pulmonary protective functions of rare ginsenoside Rg4 on particulate matter-induced inflammatory responses. Biotechnol. Bioprocess Eng. 24: 445–453.

    Article  CAS  Google Scholar 

  17. Mikolka, P., P. Kosutova, M. Kolomaznik, J. Topercerova, J. Kopincova, A. Calkovska, and D. Mokra (2019) Effect of different dosages of dexamethasone therapy on lung function and inflammation in an early phase of acute respiratory distress syndrome model. Physiol. Res. 68: S253–S263.

    Article  CAS  Google Scholar 

  18. Lee, W., H. Lee, T. Lee, E. K. Park, and J. S. Bae (2020) Inhibitory functions of maslinic acid, a natural triterpene, on HMGB1-mediated septic responses. Phytomedicine. 69: 153200.

    Article  CAS  Google Scholar 

  19. Jeong, S. Y., M. Kim, E. K. Park, J. S. Kim, D. Hahn, and J. S. Bae (2020) Inhibitory functions of novel compounds from dioscorea batatas decne peel on HMGB1-mediated septic responses. Biotechnol. Bioprocess Eng. 25: 1–8.

    Article  CAS  Google Scholar 

  20. Ma, Y., T. Karunakaran, V. P. Veeraraghavan, S. K. Mohan, and S. Li (2019) Sesame inhibits cell proliferation and induces apoptosis through inhibition of STAT-3 translocation in thyroid cancer cell lines (FTC-133). Biotechnol. Bioprocess Eng. 24: 646–652.

    Article  CAS  Google Scholar 

  21. Zhang, Y., M. Liu, R. Fan, Q. Zhou, J. Yang, S. Yang, C. Wang, and J. Kou (2019) Walnut protein isolates attenuate particulate matter-induced lung and cardiac injury in mice and zebra fish. RSC Adv. 9: 40736–40744.

    Article  CAS  Google Scholar 

  22. Jia, Y. Y., Q. Wang, and T. Liu (2017) Toxicity research of PM2.5 compositions in vitro. Int. J. Environ. Res. Public Health. 14: 232.

    Article  Google Scholar 

  23. Zwolak, I. (2016) Comparison of three different cell viability assays for evaluation of vanadyl sulphate cytotoxicity in a Chinese hamster ovary K1 cell line. Toxicol. Ind. Health. 32: 1013–1025.

    Article  CAS  Google Scholar 

  24. Dumax-Vorzet, A. F., M. Tate, R. Walmsley, R. H. Elder, and A. C. Povey (2015) Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells. Mutagenesis. 30: 621–633.

    Article  CAS  Google Scholar 

  25. Bisig, C., S. Steiner, P. Comte, J. Czerwinski, A. Mayer, A. Petri-Fink, and B. Rothen-Rutishauser (2015) Biological effects in lung cells in vitro of exhaust aerosols from a gasoline passenger car with and without particle filter. Emiss. Control Sci. Technol. 1: 237–246.

    Article  CAS  Google Scholar 

  26. Geng, H., Z. Meng, and Q. Zhang (2006) In vitro responses of rat alveolar macrophages to particle suspensions and water-soluble components of dust storm PM2.5. Toxicol. In Vitro. 20: 575–584.

    Article  CAS  Google Scholar 

  27. Redza-Dutordoir, M. and D. A. Averill-Bates (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 1863: 2977–2992.

    Article  CAS  Google Scholar 

  28. Jurgensmeier, J. M., Z. Xie, Q. Deveraux, L. Ellerby, D. Bredesen, and J. C. Reed (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA. 95: 4997–5002.

    Article  CAS  Google Scholar 

  29. Lin, L., K. Cheng, Z. Xie, C. Chen, L. Chen, Y. Huang, and Z. Liang (2019) Purification and characterization a polysaccharide from Hedyotis diffusa and its apoptosis inducing activity toward human lung cancer cell line A549. Int. J. Biol. Macromol. 122: 64–71.

    Article  CAS  Google Scholar 

  30. Brentnall, M., L. Rodriguez-Menocal, R. L. De Guevara, E. Cepero, and L. H. Boise (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 14: 32.

    Article  CAS  Google Scholar 

  31. Yang, B., D. Ye, and Y. Wang (2013) Caspase-3 as a therapeutic target for heart failure. Expert Opin. Ther. Targets. 17: 255–263.

    Article  CAS  Google Scholar 

  32. Lodovici, M. and E. Bigagli (2011) Oxidative stress and air pollution exposure. J. Toxicol. 2011: 487074.

    Article  Google Scholar 

  33. Valavanidis, A., T. Vlachogianni, K. Fiotakis, and S. Loridas (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health. 10: 3886–3907.

    Article  Google Scholar 

  34. Valavanidis, A., K. Fiotakis, and T. Vlachogianni (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol Rev. 26: 339–362.

    Article  CAS  Google Scholar 

  35. Birben, E., U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci (2012) Oxidative stress and antioxidant defense. World Allergy Organ J. 5: 9–19.

    Article  CAS  Google Scholar 

  36. Ighodaro, O. M. and O. A. Akinloye (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 54: 287–293.

    Article  Google Scholar 

  37. Chirino, Y. I., Y. Sanchez-Perez, A. R. Osornio-Vargas, R. Morales-Barcenas, M. C. Gutierrez-Ruiz, Y. Segura-Garcia, I. Rosas, J. Pedraza-Chaverri, and C. M. Garcia-Cuellar (2010) PM10 impairs the antioxidant defense system and exacerbates oxidative stress driven cell death. Toxicol. Lett. 193: 209–216.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Kyungpook National University Development Project Research Fund, 2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taeho Lee or Jong-Sup Bae.

Ethics declarations

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, H., Noh, Y., Choo, S. et al. Suppressive Activities of Fisetin on Particulate Matter-induced Oxidative Stress. Biotechnol Bioproc E 26, 568–574 (2021). https://doi.org/10.1007/s12257-021-0050-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0050-0

Keywords

Navigation