Skip to main content
Log in

Temperature Variations of a Geomembrane Liner in a Municipal Solid Waste Landfill from Construction to Closure

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

This paper explores the variations of the temperatures of a black high-density polyethylene (HDPE) geomembrane (GMB) liner in a municipal solid waste landfill through the lens of a field case study. The geomembrane temperature was monitored from the start of the construction phase to the closure phase, a span of 7 years. Solar radiation had a significant effect on the temperature variations of the geomembrane while exposed to the atmosphere. The more significant impact was on the geomembrane on the side slope of the cell, where temperatures were much higher than on the cell floor. A white geotextile cushion did not insulate the geomembrane from solar radiation, which still experienced elevated temperatures. However, the placement of the drainage layer reduced the impact of solar radiation on the GMB and insulated it. The daily temperature variation of the geomembrane covered with a white geotextile varied from 12 °C to 38 °C at floor level but dropped to 20 °C after the placement of the drainage layer. Along the side slope, without the drainage layer, the daily temperature variation of the GMB fluctuated between 5 and 59 °C and dropped to 23 °C after the installation of the drainage layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:

Similar content being viewed by others

References

  1. Abuel-Naga HM, Bouazza A (2013) Thermomechanical behavior of saturated geosynthetic clay liners. J Geotech Geoenviron Eng 139:539–547. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000799

    Article  Google Scholar 

  2. Abuel-Naga HM, Bouazza A, Gates WP (2013) Impact of bentonite form on the thermal evolution of the hydraulic conductivity of geosynthetic clay liners. Géotechn Lett 3:26–30. https://doi.org/10.1680/geolett.13.007

    Article  Google Scholar 

  3. Bureau of Meteorology, BOM (2016) Climate statistics for Australian locations. Australian Government Bureau of Meteorology

    Google Scholar 

  4. Bouazza A (2002) Geosynthetic clay liners. Geotext Geomembr 20:3–17. https://doi.org/10.1016/S0266-1144(01)00025-5

    Article  Google Scholar 

  5. Bouazza A (2021) Interaction between PFASs and geosynthetic liners: Current status and the way forward. Geosynth Int 28:214–223. https://doi.org/10.1680/jgein.20.00033

    Article  Google Scholar 

  6. Bouazza A, Bowders JJ Jr (2009) Geosynthetic clay liners for waste containment facilities. CRC Press, London

    Book  Google Scholar 

  7. Bouazza A, Rahman F (2007) Oxygen diffusion through partially hydrated geosynthetic clay liners. Geotechnique 57(9):767–772. https://doi.org/10.1680/geot.2007.57.9.767

    Article  Google Scholar 

  8. Bouazza A, Nahlawi H, Aylward M (2011) In situ temperature monitoring in an organic-waste landfill cell. J Geotech Geoenviron Eng 137:1286–1289. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000533

    Article  Google Scholar 

  9. Bouazza A, Zornberg J, McCartney JS, Singh RM (2013) Unsaturated geotechnics applied to geoenvironmental engineering problems involving geosynthetics. Eng Geol 165:143–153. https://doi.org/10.1016/j.enggeo.2012.11.018

    Article  Google Scholar 

  10. Bouazza A, Singh RM, Rowe RK, Gassner F (2014) Heat and moisture migration in a geomembrane–GCL composite liner subjected to high temperatures and low vertical stresses. Geotext Geomembr 42:555–563. https://doi.org/10.1016/j.geotexmem.2014.08.002

    Article  Google Scholar 

  11. Bouazza A, Ali MA, Rowe RK, Gates WP, El-Zein A (2017) Heat mitigation in geosynthetic composite liners exposed to elevated temperatures. Geotext Geomembr 45:406–417. https://doi.org/10.1016/j.geotexmem.2017.05.004

    Article  Google Scholar 

  12. Brachman RWI, Rowe RK, Arnepalli DN, Take WA (2015) Thermal exposure conditions for a composite liner with a black geomembrane exposed to solar radiation. Geosynth Int 22:93–109. https://doi.org/10.1680/gein.14.00034

    Article  Google Scholar 

  13. Calder GV, Stark TD (2010) Aluminum reactions and problems in municipal solid waste landfills. Pract Period Hazardous Toxic Radioact Waste Mana 14:258–265. https://doi.org/10.1061/(ASCE)HZ.1944-8376.0000045

    Article  CAS  Google Scholar 

  14. Carnero-Guzman GG, Bouazza A, Gates WP, Rowe RK, McWatters R (2021) Hydration/dehydration behaviour of geosynthetic clay liners in the Antarctic environment. Geotext Geomembr 49:196–209. https://doi.org/10.1016/j.geotexmem.2020.10.020

    Article  Google Scholar 

  15. ENSR (2008) Technical specification Clayton road landfill stage 2. ENSR Australia Pty Ltd (ENSR)

    Google Scholar 

  16. Ghavam-Nasir A, El-Zein A, Airey D, Rowe RK, Bouazza A (2019) Numerical simulation of geosynthetic clay liner desiccation under high thermal gradients and low overburden stress. Int J Geomech 19:04019069. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001425

    Article  Google Scholar 

  17. Ghavam-Nasiri A, El-Zein A, Airey D, Rowe RK, Bouazza A (2020) Thermal desiccation of geosynthetic clay liners under brine pond conditions. Geosynth Int 27:593–605. https://doi.org/10.1680/jgein.20.00020

    Article  Google Scholar 

  18. Hanson JL, Yesiller N, Oettle N (2010) Spatial and temporal temperature distributions in municipal solid waste landfills. J Environ Eng 136:804–814. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000202

    Article  CAS  Google Scholar 

  19. Jafari NH, Stark TD, Rowe RK (2014) Service life of HDPE geomembranes subjected to elevated temperatures. J Hazard Toxic Radioact Waste 18:16–26. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000188

    Article  CAS  Google Scholar 

  20. Klein R, Baumann T, Kahapka E, Niessner R (2001) Temperature development in a modern municipal solid waste incineration (MSWI) bottom ash landfill with regard to sustainable waste management. J Hazard Mater 83:265–280. https://doi.org/10.1016/S0304-3894(01)00188-1

    Article  CAS  Google Scholar 

  21. Koerner GR, Koerner RM (2006) Long-term temperature monitoring of geomembranes at dry and wet landfills. Geotext Geomembr 24:72–77. https://doi.org/10.1016/j.geotexmem.2004.11.003

    Article  Google Scholar 

  22. McWatters RS, Rowe RK, Wilkins D, Spedding T, Jones D, Terry D, Hince G, Wise L, Gates WP, Bouazza A, Battista VD, Shoaib M, Snape I (2016) Geosynthetics in Antarctica: performance of a composite barrier system to contain hydrocarbon-contaminated soil after 3 years in the field. Geotext Geomembr 44:673–685. https://doi.org/10.1016/j.geotexmem.2016.06.001

    Article  Google Scholar 

  23. Pelte T, Pierson P, Gourc JP (1994) Thermal analysis of geomembrane exposed to solar radiation. Geosynth Int 1:21–44. https://doi.org/10.1680/gein.1.0002

    Article  CAS  Google Scholar 

  24. Rowe RK (2005) Long-term performance of contaminant barrier systems. Geotechnique 55:631–678. https://doi.org/10.1680/geot.2005.55.9.631

    Article  Google Scholar 

  25. Rowe RK, Chappel MJ, Brachman RWI, Take WA (2012) Field study of wrinkles in a geomembrane at a composite liner test site. Can Geotech J 49:1196–1211. https://doi.org/10.1139/t2012-083

    Article  Google Scholar 

  26. Rowe RK, Islam MZ (2009) Impact of landfill liner time–temperature history on the service life of HDPE geomembranes. Waste Manag 29:2689–2699. https://doi.org/10.1016/j.wasman.2009.05.010

    Article  CAS  Google Scholar 

  27. Singh RM, Bouazza A (2013) Thermal conductivity of geosynthetics. Geotext Geomembr 39:1–8. https://doi.org/10.1016/j.geotexmem.2013.06.002

    Article  Google Scholar 

  28. Take WA, Watson E, Brachman RWI, Rowe RK (2012) Thermal expansion and contraction of geomembrane liners subjected to solar exposure and backfilling. J Geotech Geoenviron Eng 138:1387–1397. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000694

    Article  Google Scholar 

  29. Tincopa M, Bouazza A (2021) Water retention curves of a geosynthetic clay liner under non-uniform temperature-stress paths. Geotext Geomembr. https://doi.org/10.1016/j.geotexmem.2021.04.005

    Article  Google Scholar 

  30. Touze-Foltz N, Xie H, Stoltz G (2021) Performance issues of barrier systems for landfills: a review. Geotext Geomembr 49:475–488. https://doi.org/10.1016/j.geotexmem.2020.10.016

    Article  Google Scholar 

  31. Touze-Foltz N, Bannour H, Barral C, Stoltz G (2016) A review of the performance of geosynthetics for environmental protection. Geotext Geomembr 44:656–672. https://doi.org/10.1016/j.geotexmem.2016.05.008

    Article  Google Scholar 

  32. Yesiller N, Hanson JL (2003) Analysis of temperatures at a municipal solid waste landfill. In: Christensen et al. (ed) . Sardinia 2003, Ninth International Waste Management and Landfill Symposium. CISA, Italy, pp 1–10

  33. Yesiller N, Hanson J, Liu W (2005) Heat generation in municipal solid waste landfills. J Geotech Geoenviron Eng 131:1330–1344. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1330)

    Article  Google Scholar 

  34. Zhang L (2018) Durability of HDPE geomembranes to leachates of extreme chemistry, PhD Thesis, Monash University, Melbourne, Australia.

  35. Zhang L, Bouazza A, Rowe RK, Scheirs J (2017) Effect of welding parameters on properties of HDPE geomembrane seams. Geosynth Int 24:408–418. https://doi.org/10.1680/jgein.17.00011

    Article  Google Scholar 

  36. Zhang L, Bouazza A, Rowe RK, Scheirs J (2018) Effects of a very low pH solution on the properties of an HDPE geomembrane. Geosynth Int 25:118–131. https://doi.org/10.1680/jgein.17.00037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmalek Bouazza.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lu Zhang: previously Monash University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouazza, A., Zhang, L. Temperature Variations of a Geomembrane Liner in a Municipal Solid Waste Landfill from Construction to Closure. J Indian Inst Sci 101, 725–743 (2021). https://doi.org/10.1007/s41745-021-00249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00249-x

Navigation