Skip to main content
Log in

Composite Control of a Hovering Helicopter Based on Optimized Sliding Mode Control

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A composite control law for stabilizing a small-scale helicopter during hover flight mode is proposed in this paper. The proposed method is developed by combining the sliding mode control (SMC) and a nonlinear control law. Parameters of the proposed controller are optimized using particle swarm optimization technique. The SMC ensures robustness under disturbances and parameter uncertainties, while the nonlinear control law improves the transient response of the closed-loop system. Adequacy of the combination of the sliding mode controller and the nonlinear control law is validated using mathematical analysis and simulation experiments. The results illustrate an efficient execution of the proposed controller to stabilize the system by reducing the deviations from the trim state and alleviating the effect of disturbance in the closed-loop response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baldini, A., Ciabattoni, L., Felicetti, R., Ferracuti, F., Freddi, A., Monteriù, A., Vaidyanathan, S.: Particle swarm optimization based sliding mode control design: application to a quadrotor vehicle. In: Applications of Sliding Mode Control in Science and Engineering, Springer, Cham,pp. 143–169 (2017). https://doi.org/10.1007/978-3-319-55598-0_7

  2. Budiyono, A., Riyanto, B., Joelianto, E.: Intelligent unmanned systems: theory and applications, vol. 192, Springer, New York (2009). https://doi.org/10.1007/978-3-642-00264-9_3

  3. Cai, G., Chen, B.M., Dong, X., Lee, T.H.: Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter. Mechatronics 21(5), 803–820 (2011). https://doi.org/10.1016/j.mechatronics.2011.02.002

    Article  Google Scholar 

  4. Cai, G., Chen, B.M., Lee, T.H.: An overview on development of miniature unmanned rotorcraft systems. Front. Electr. Electron. Eng. China 5(1), 1–14 (2010). https://doi.org/10.1007/s11460-009-0065-3

    Article  Google Scholar 

  5. Chen, B.M., Lee, T.H., Peng, K., Venkataramanan, V.: Composite nonlinear feedback control for linear systems with input saturation: theory and an application. IEEE Trans. Autom. Control 48(3), 427–439 (2003). https://doi.org/10.1109/TAC.2003.809148

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan, X., Yue, C., Liu, H., Guo, H., Zhang, F.: Attitude tracking control of small-scale unmanned helicopters using quaternion-based adaptive dynamic surface control. IEEE Access 9, 10153–10165 (2020). https://doi.org/10.1109/ACCESS.2020.3043363

    Article  Google Scholar 

  7. Espinoza, E.S., Garcia, O., Lugo, I., Ordaz, P., Malo, A., Lozano, R.: Modeling and sliding mode control of a micro helicopter-airplane system. J. Intell. Rob. Syst. 73(1–4), 469–486 (2014). https://doi.org/10.1007/s10846-013-9891-x

    Article  Google Scholar 

  8. Fallaha, C.J., Saad, M., Kanaan, H.Y., Al-Haddad, K.: Sliding-mode robot control with exponential reaching law. IEEE Trans. Industr. Electron. 58(2), 600–610 (2011). https://doi.org/10.1109/TIE.2010.2045995

    Article  Google Scholar 

  9. Fang, X., Wu, A., Shang, Y., Dong, N.: A novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbance. Nonlinear Dyn. 83(1–2), 1053–1068 (2016). https://doi.org/10.1007/s11071-015-2387-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferrara, A., Utkin, V.: Sliding mode optimization in dynamic lti systems. J. Optim. Theory Appl. 115(3), 727–740 (2002). https://doi.org/10.1023/A:1021267517097

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedland, B.: Control System Design: An Introduction to State-space Methods. Courier Corporation, North Chelmsford (2012)

    MATH  Google Scholar 

  12. Gadewadikar, J., Lewis, F., Subbarao, K., Chen, B.M.: Structured h-infinity command and control-loop design for unmanned helicopters. J. Guid. Control Dyn. 31(4), 1093–1102 (2008). https://doi.org/10.2514/1.31377

    Article  Google Scholar 

  13. Gao, W., Hung, J.C.: Variable structure control of nonlinear systems: a new approach. IEEE Trans. Industr. Electron. 40(1), 45–55 (1993). https://doi.org/10.1109/41.184820

    Article  Google Scholar 

  14. Gavrilets, V.: Dynamic model for a miniature aerobatic helicopter. In: Handbook of Unmanned Aerial Vehicles, Springer, Dordrecht, pp. 279–306 (2015). https://doi.org/10.1007/978-90-481-9707-1_54

  15. Humaidi, A.J., Hasan, A.F.: Particle swarm optimization-based adaptive super-twisting sliding mode control design for 2-degree-of-freedom helicopter. Meas. Control 52(9–10), 1403–1419 (2019). https://doi.org/10.1177/0020294019866863

    Article  Google Scholar 

  16. Jiang, T., Lin, D., Song, T.: Novel integral sliding mode control for small-scale unmanned helicopters. J. Franklin Inst. 356(5), 2668–2689 (2019). https://doi.org/10.1016/j.jfranklin.2019.01.035

    Article  MathSciNet  MATH  Google Scholar 

  17. Masajedi, P., Ghanbarzadeh, A.: Optimal controller designing based on linear quadratic regulator technique for an unmanned helicopter at hover with the presence of wind disturbance. Int. J. Dyn. Control 1(3), 214–222 (2013). https://doi.org/10.1007/s40435-013-0019-8

    Article  Google Scholar 

  18. Padfield, G.D.: Helicopter Flight Dynamics, 2nd edn. Blackwell, Amsterdam (2007)

    Book  Google Scholar 

  19. Pradana, W.A., Joelianto, E., Budiyono, A., Adiprawita, W.: Robust mimo \( h_\infty \) integral-backstepping pid controller for hovering control of unmanned model helicopter. J. Aerosp. Eng. 24(4), 454–462 (2011). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000074

    Article  Google Scholar 

  20. Raj, N., Banavar, R.N., Kothari, M., et al.: Robust attitude tracking for aerobatic helicopters: a geometric approach. IEEE Trans. Control Syst. Technol. 29(1), 150–164 (2020). https://doi.org/10.1109/TCST.2020.2969124

    Article  Google Scholar 

  21. Thomas, F., Mija, S.: Modelling of hovering helicopter and its stability analysis using participation factor. IFAC-Papers 51(1), 504–511 (2018). https://doi.org/10.1016/j.ifacol.2018.05.085

    Article  Google Scholar 

  22. Tijani, I.B., Akmeliawati, R., Legowo, A., Budiyono, A.: Optimization of an extended h-infinity controller for unmanned helicopter control using multiobjective differential evolution (mode). Aircraft Eng. Aerosp. Technol. Int. J. 87(4), 330–344 (2015). https://doi.org/10.1108/AEAT-05-2012-0068

    Article  Google Scholar 

  23. Varghese, A.T., Mija, S.: Sliding mode control based design for a 6-dof miniature helicopter in hovering flight mode. In: 2019 IEEE 5th International Conference on Mechatronics System and Robots (ICMSR), IEEE, pp. 59–63 (2019). https://doi.org/10.1109/ICMSR.2019.8835471

  24. Vazquez-Nicolas, J., Zamora, E., González-Hernández, I., Lozano, R., Sossa, H.: Pd+ smc quadrotor control for altitude and crack recognition using deep learning. Int. J. Control Autom. Syst. 18(4), 834–844 (2020). https://doi.org/10.1007/s12555-018-0852-9

    Article  Google Scholar 

  25. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview. Soft. Comput. 22(2), 387–408 (2018). https://doi.org/10.1007/s00500-016-2474-6

    Article  Google Scholar 

  26. Zheng, Z., Sun, W., Chen, H., Yeow, J.T.: Integral sliding mode based optimal composite nonlinear feedback control for a class of systems. Control Theory Technol. 12(2), 139–146 (2014). https://doi.org/10.1007/s11768-014-0022-4

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Femi Thomas.

Additional information

Communicated by Mauro Pontani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, F., Thottungal, A.V. & Johnson, M.S. Composite Control of a Hovering Helicopter Based on Optimized Sliding Mode Control. J Optim Theory Appl 191, 756–775 (2021). https://doi.org/10.1007/s10957-021-01901-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01901-3

Keywords

Navigation