Skip to main content
Log in

A Mesoscopic Model for Particle-Filled Composites with Network Microstructures

  • Published:
Mechanics of Composite Materials Aims and scope

The effective elastic modulus of composites with network microstructures is studied by micromechanics methods. Based on their network morphology, a mesoscopic model for them is developed. The predictions found by the model are compared with previous experimental results, and a good agreement between them is found to exist. The effect of some parameters, including the particle size, volume fraction and distribution, on the composite stiffness is analyzed. Finally, the reinforcing mechanism of network morphology is investigated by finite-element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. L. J. Huang, L. Geng, and H. X. Peng, “In situ (TiBw+TiCp)/Ti6Al4V composites with a network reinforcement distribution,” Mater. Sci. Eng. A, 527, No. 24, 6723-6727 (2010).

    Article  Google Scholar 

  2. L. J. Huang, L. Geng, H. X. Peng, and J. Zhang, “Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture,” Scripta Mater., 64, No. 9, 844-847 (2011).

    Article  CAS  Google Scholar 

  3. L. J. Huang, L. Geng, H. X. Peng, K. Balasubramaniam, and G. S. Wan, “Effects of sintering parameters on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composites with a novel network architecture,” Mater. Design, 32, No. 6, 3347-3353 (2011).

    Article  CAS  Google Scholar 

  4. L. J. Huang, L. Geng, B. Wang, H. Y. Xu, and B. Kaveendran, “Effects of extrusion and heat treatment on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composite with a network architecture,” Compos. Part A, 43, 486-491 (2012).

    Article  CAS  Google Scholar 

  5. H. T. Hu, L. J. Huang, L. Geng, B. X. Liu, and B. Wang, “Oxidation behavior of TiB-whisker-reinforced Ti60 alloy composites with three-dimensional network architecture,” Corros. Sci., 85, 7-14 (2014).

    Article  CAS  Google Scholar 

  6. Y. Jiao, L. J. Huang, L. Geng, R. Zhang, S. Jiang, X. T. Li, and Y. N. Gao, “Strengthening and plasticity improvement mechanisms of titanium matrix composites with two-scale network microstructure,” Powder Technol., 356, 980-989 (2019).

    Article  CAS  Google Scholar 

  7. Y. Zhou, D. L. Sun, D. P. Jiang, X. L. Han, Q. Wang, and G. H. Wu, “Microstructural characteristics and evolution of Ti2AlN/TiAl composites with a network reinforcement architecture during reaction hot pressing process,” Mater. Charact., 80, 28-35 (2013).

    Article  CAS  Google Scholar 

  8. S. Tahamtan, A. Halvaee, M. Emamy, Z. Y. Jiang, and A. F. Boostani, “Exploiting superior tensile properties of a novel network-structure AlA206 matrix composite by hybridizing micron-sized Al3Ti with Al2O3 nano particulates,” Mater. Sci. Eng. A, 619, 190-198 (2014).

    Article  CAS  Google Scholar 

  9. Z. Y. Zhang, G. Chen, S. L. Zhang, Y. T. Zhao, R. Yang, and M. P. Liu, “Enhanced strength and ductility in ZrB2/2024Al nanocomposite with a quasi-network architecture,” J. Alloy. Comp., 778, 833-838 (2019).

    Article  CAS  Google Scholar 

  10. C. Y. Shang, T. F. Liu, F. M. Zhang, and F. Chen, “Effect of network size on mechanical properties and wear resistance of titanium/nanodiamonds nanocomposites with network architecture,” Compos. Commun., 19, 74-81 (2020).

    Article  Google Scholar 

  11. H. B. Yang, S. Tian, T. Gao, J. F. Nie, Z. S. You, G. L. Liu, H. C. Wang, and X. F. Liu, “High-temperature mechanical properties of 2024 Al matrix nanocomposite reinforced by TiC network architecture,” Mater. Sci. Eng. A, 763, 138121 (2019).

    Article  CAS  Google Scholar 

  12. Y. P. Jiang, L. G. Sun, Q. Q. Wu, and K. Qiu, “Enhanced tensile ductility of metallic glass matrix composites with novel microstructure,” J. Non-Cryst. Solids, 459, 26-31 (2017).

    Article  CAS  Google Scholar 

  13. C. Xiao, L. Chen, Y. L. Tang, X. Zhang, K. Zheng, and X. Y. Tian, “Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity,” Composit. Part A, 124, 105511 (2019).

    Article  CAS  Google Scholar 

  14. C. Xiao, L. Chen, Y. L. Tang, X. Zhang, K. Zheng, and X. Y. Tian, “Enhanced thermal conductivity of silicon carbide nanowires (SiCw)/epoxy resin composite with segregated structure,” Composit. Part A, 116, 98-105 (2019).

    Article  CAS  Google Scholar 

  15. M. C. Hu, J. Y. Feng, and K. M. Ng, “Thermally conductive PP/AlN composites with a 3-D segregated structure,” Compos. Sci. Technol., 110, 26-34 (2015).

    Article  CAS  Google Scholar 

  16. F. E. Alam, W. Dai, M. H. Yang, S. Y. Du, X. M. Li, J. H. Yu, N. Jiang, and C. T. Lin, “In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity,” J. Mater. Chem. A, 5, No. 13, 6164-6169 (2017).

    Article  CAS  Google Scholar 

  17. L. C. Jia, D. X. Yan, C. H. Cui, X. Jiang, X. Jib, and Z. M. Li, “Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks,” J. Mater. Chem. C, 3, No. 10, 9369 (2015).

  18. M. H. Al-Saleh, “Electrical and electromagnetic interference shielding characteristics of GNP/UHMWPE composites,” J. Phys. D Appl. Phys., 49, No. 16, 195302 (2016).

  19. P. Zhang, X. Ding, Y. Y. Wang, Y. Gong, K. Zheng, L. Chen, X. Y. Tian, and X. Zhang, “Segregated double network enabled effective electromagnetic shielding composites with extraordinary electrical insulation and thermal conductivity,” Composit. Part A, 117, 56-64 (2019).

    Article  CAS  Google Scholar 

  20. M. Q. Sun, G. Gao, B. Dai, L. Yang, K. Liu, S. Zhang, S. Guo, J. C. Han, and J. Q. Zhu, “Enhancement in thermal conductivity of polymer composites through construction of graphene/nanodiamond bi-network thermal transfer paths,” Mater. Lett., 271, 127772 (2020).

    Article  CAS  Google Scholar 

  21. H. Altenbach and V. Eremeyev, Thin-Walled Structural Elements: Classification, Classical and Advanced Theories, New Applications. In: Altenbach H., Eremeyev V. (eds) Shell-like Structures. CISM International Centre for Mechanical Sciences (Courses and Lectures), Springer (2017).

  22. C. Kröner, H. Altenbach, and K. Naumenko, “Coupling of a structural analysis and flow simulation for short-fiberreinforced polymers: property prediction and transfer of results,” Mech. Compos. Mater., 45, No. 3, 249-256 (2009).

    Article  Google Scholar 

  23. Y. P. Jiang and H. L. Fan, “A micromechanics model for predicting the stress–strain relations of filled elastomers,” Comput. Mater. Sci., 67, 104-108 (2013).

    Article  CAS  Google Scholar 

  24. Y. P. Jiang, X. P. Shi, and K. Qiu, “A micromechanics-based incremental damage model for carbon black filled rubbers,” Composit. Part B, 75, 11-16 (2015).

    Article  CAS  Google Scholar 

  25. R. M. Christensen and K. H. Lo, “Solutions for effective shear properties in three phase sphere and cylinder models,” J. Mech. Phys. Solids, 27, No. 4, 315-330 (1979).

    Article  CAS  Google Scholar 

  26. J. C. Halpin and J. L. Kardos, “The Halpin–Tsai equations: A review,” Polym. Eng. Sci., 16, No. 5, 344-352 (1976).

    Article  CAS  Google Scholar 

  27. L. H. Dai, Z. P. Huang, and R. Wang, “Explicit expressions for bounds for the effective moduli of multi-phased composites by the generalized self-consistent method,” Compos. Sci. Technol., 59, No. 11, 1691-1699 (1999).

    Article  Google Scholar 

  28. J. Ba, X. H. Zheng, R. Ning, J. H. Lin, J. L. Qi, J. Cao, W. Cai, and J. C. Feng, “C/SiC composite-Ti6Al4V joints brazed with negative thermal expansion ZrP2WO12 nanoparticle reinforced AgCu alloy,” J. Eur. Ceram. Soc., 39, No. 4, 755-761 (2018).

    Article  Google Scholar 

  29. K. B. Panda and K. S. R. Chandran, “First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory,” Acta Mater., 54, No. 6, 1641-1657 (2006).

    Article  CAS  Google Scholar 

  30. Y. P. Jiang, H. Yang, and P. H. Chen, “Analytical study of morphologies for ultra high elastic stiffness of composites with aligned cylindrical fibers,” Compos. Struct., 94, No. 8, 2390-2396 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Jiang.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 57, No. 3, pp. 591-602, May-June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y.P., Wu, J. & Zhu, Y. A Mesoscopic Model for Particle-Filled Composites with Network Microstructures. Mech Compos Mater 57, 415–424 (2021). https://doi.org/10.1007/s11029-021-09964-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09964-z

Keywords

Navigation