Skip to main content
Log in

Effect of the surface microstructure of arsenopyrite on the attachment of Sulfobacillus thermosulfidooxidans in the presence of dissolved As(III)

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Understanding bacterial adsorption and the evolution of biofilms on arsenopyrite with different surface structures is of great significance to clarifying the mechanism of microbe-mineral interfacial interactions and the production of acidic mine drainage impacting the environment. In this study, the attachment of Sulfobacillus thermosulfidooxidans cells and subsequent biofilm formation on arsenopyrite with different surface structures in the presence of dissolved As(III) was studied. Arsenopyrite slices with a specific surface were obtained by electrochemical corrosion at 0.26 V. The scanning electronic microscopy-energy dispersion spectra analyses indicated that the arsenopyrite surface deficient in sulfur and iron obtained by electrochemical treatment was not favorable for the initial adsorption of bacteria, and the addition of As(III) inhibited the adsorption of microbial cells. Epifluorescence microscopy showed that the number of cells attaching to the arsenopyrite surface increased with time; however, biofilm formation was delayed significantly when As(III) was added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.L. Corkhill and D.J. Vaughan, Arsenopyrite oxidation—A review, Appl. Geochem., 24(2009), No. 12, p. 2342.

    Article  CAS  Google Scholar 

  2. D.M. Miller and G.S. Hansford, Batch biooxidation of a gold-bearing pyrite-arsenopyrite concentrate, Miner. Eng., 5(1992), No. 6, p. 613.

    Article  CAS  Google Scholar 

  3. F. Espiell, A. Roca, M. Cruells, and C. Núñez, Gold and silver recovery by cyanidation of arsenopyrite ore, Hydrometallurgy, 16(1986), No. 2, p. 141.

    Article  CAS  Google Scholar 

  4. H.R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides—A review, Hydrometallurgy, 84(2006), No. 1–2, p. 81.

    Article  CAS  Google Scholar 

  5. S.F. Wang, B.B. Jiao, M.M. Zhang, G.Q. Zhang, X. Wang, and Y.F. Jia, Arsenic release and speciation during the oxidative dissolution of arsenopyrite by O2 in the absence and presence of EDTA, J. Hazard. Mater., 346(2018), p. 184.

    Article  CAS  Google Scholar 

  6. J.S. Liu, Z.H. Wang, M.M. Gen, and G.Z. Qiu, Progress in the study of polyphase interfacial interactions between microorganism and mineral in bio-hydrometallurgy, Min. Metall. Eng., 26(2006), No. 1, p. 40.

    Google Scholar 

  7. W.B. Ling, L. Wang, H.C. Liu, Z.Y. Nie, Y. Yang, Y. Yang, C.Y. Ma, L. Zheng, Y.D. Zhao, and J.L. Xia, The evidence of decisive effect of both surface microstructure and speciation of chalcopyrite on attachment behaviors of extreme thermoacidophile sulfolobus metallicus, Minerals, 8(2018), No. 4, art. No. 159.

  8. G. Vander Voort, Color metallography, Microsc. Microanal., 10(2004), No. S02, p. 70.

    Article  Google Scholar 

  9. R.Y. Zhang, T.R. Neu, S. Bellenberg, U. Kuhlicke, W. Sand, and M. Vera, Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms, Microb. Biotechnol., 8(2015), No. 3, p. 448.

    Article  CAS  Google Scholar 

  10. M. Vera, A. Schippers, and W. Sand, Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation—part A, Appl. Microbiol. Biotechnol., 97(2013), No. 17, p. 7529.

    Article  CAS  Google Scholar 

  11. J.L. Xia, H.R. Zhu, L. Wang, H.C. Liu, Z.Y. Nie, Y.D. Zhao, C.Y. Ma, C.H. Hong, and X.J. Zhen, In situ characterization of relevance of surface microstructure and electrochemical properties of chalcopyrite to adsorption of Acidianus manzaensis, Adv. Mater. Res., 1130(2015), p. 183.

    Article  Google Scholar 

  12. D.W. Price and G.W. Warren, The influence of silver ion on the electrochemical response of chalcopyrite and other mineral sulfide electrodes in sulfuric acid, Hydrometallurgy, 15(1986), No. 3, p. 303.

    Article  CAS  Google Scholar 

  13. W. Sand, T. Gehrke, P.G. Jozsa, and A. Schippers, (Bio)hemistry of bacterial leaching—direct vs. indirect bioleaching, Hydrometallurgy, 59(2001), No. 2–3, p. 159.

    Article  CAS  Google Scholar 

  14. R.H. Lara, J.V. García-Meza, I. González, and R. Cruz, Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans, Appl. Microbiol. Bio-technol., 97(2013), No. 6, p. 2711.

    Article  CAS  Google Scholar 

  15. R.H. Lara, D. Valdez-Pérez, A.G. Rodríguez, H.R. Navarro-Contreras, R. Cruz, and J.V. García-Meza, Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions, Hydrometallurgy, 103(2010), No. 1–4, p. 35.

    Article  CAS  Google Scholar 

  16. H. Ramírez-Aldaba, J. Vázquez-Arenas, F.S. Sosa-Rodríguez, D. Valdez-Pérez, E. Ruiz-Baca, G. Trejo-Córdoba, M.A. Escobedo-Bretado, L. Lartundo-Rojas, P. Ponce-Peña, and R.H. Lara, Changes in biooxidation mechanism and transient biofilm characteristics by As(V) during arsenopyrite colonization with Acidithiobacillus thiooxidans, J. Ind. Microbiol. Biotechnol., 45(2018), No. 8, p. 669.

    Article  CAS  Google Scholar 

  17. N. Yee, J.B. Fein, and C.J. Daughney, Experimental study of the pH. ionic strength.and reversibility behavior of bacteria-mineral adsorption, Geochim. Cosmochim. Acta, 64(2000), No. 4, p. 609.

    Article  CAS  Google Scholar 

  18. S. Koechler, J. Farasin, J. Cleiss-Arnold, and F. Arsène-Ploetze, Toxic metal resistance in biofilms: Diversity of microbial responses and their evolution, Res. Microbiol., 166(2015), No. 10, p. 764.

    Article  CAS  Google Scholar 

  19. J.J. Harrison, H. Ceri, C.A. Stremick, and R.J. Turner, Biofilm susceptibility to metal toxicity, Environ. Microbiol., 6(2004), No. 12, p. 1220.

    Article  CAS  Google Scholar 

  20. R.J. Ram, N.C. Verberkmoes, M.P. Thelen, G.W. Tyson, B.J. Baker, R.C. Blake, M. Shah, R.L. Hettich, and J.F. Banfield, Community proteomics of a natural microbial biofilm, Science, 308(2005), No. 5730, p. 1915.

    Article  CAS  Google Scholar 

  21. Geochim. Cosmochim. Acta, Is arsenic biotransformation a detoxification mechanism for microorganisms?, Aquat. Toxicol., 146(2014), p. 212.

    Article  CAS  Google Scholar 

  22. H.C. Liu, Study on the Interfacial Interactions Between Bioleaching Microorganisms and Sulfur-Containing Substrates and Their Molecular Mechanism [Dissertation], Central South University, Changsha, 2016, p. 82.

    Google Scholar 

  23. D.R. Zhang, J.L. Xia, Z.Y. Nie, H.R. Chen, H.C. Liu, Y. Deng, Y.D. Zhao, L.L. Zhang, W. Wen, and H.Y. Yang, Mechanism by which ferric iron promotes the bioleaching of arsenopyrite by the moderate thermophile Sulfobacillus thermosulfidooxidans, Process. Biochem., 81(2019), p. 11.

    Article  CAS  Google Scholar 

  24. D.R. Zhang, H.R. Chen, J.L. Xia, Z.Y. Nie, X.L. Fan, H.C. Liu, L. Zheng, L.J. Zhang, and H.Y. Yang, Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization, J. Hazard. Mater., 384(2020), art. No. 121359.

  25. Q. Li, R.Y. Zhang, B.A. Krok, M. Vera, and W. Sand, Biofilm formation of Sulfobacillus thermosulfidooxidans on pyrite in the presence of Leptospirillum ferriphilum, Adv. Mater. Res., 1130(2015), p. 141.

    Article  Google Scholar 

  26. T.Y. Gu, S.O. Rastegar, S.M. Mousavi, M. Li, and M.H. Zhou, Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge, Bioresour. Technol., 261(2018), p. 428.

    Article  CAS  Google Scholar 

  27. K.O. Stetter, A. Segerer, W. Zillig, G. Huber, G. Fiala, R. Huber, and H. König, Extremely thermophilic sulfur-metabolizing archaebacteria, Syst. Appl. Microbiol., 7(1986), No. 2–3, p. 393.

    Article  CAS  Google Scholar 

  28. K. Bosecker, Bioleaching: metal solubilization by microorganisms, FEMS Microbiol. Rev., 20(1997), No. 3–4, p. 591.

    Article  CAS  Google Scholar 

  29. C.L. Liang, J.L. Xia, Y. Yang, Z.Y. Nie, X.J. Zhao, L. Zheng, C.Y. Ma, and Y.D. Zhao, Characterization of the thermo-reduction process of chalcopyrite at 65°C by cyclic voltammetry and XANES spectroscopy, Hydrometallurgy, 107(2011), No. 1–2, p. 13.

    Article  CAS  Google Scholar 

  30. C. Castro, R.Y. Zhang, J. Liu, S. Bellenberg, T.R. Neu, E. Donati, W. Sand, and M. Vera, Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spand Sulfolobus metallicus, Res. Microbiol., 167(2016), No. 7, p. 604.

    Article  Google Scholar 

  31. A. Koerdt, J. Gödeke, J. Berger, K.M. Thormann, and S.V. Albers, Crenarchaeal biofilm formation under extreme conditions, PLoS One, 5(2010), No. 11, art. No. e14104.

  32. C.J. de Africa, R.P. van Hille, W. Sand, and S.T.L. Harrison, Investigation and in situ visualisation of interfacial interactions of thermophilic microorganisms with metal-sulphides in a simulated heap environment, Miner. Eng., 48(2013), p. 100.

    Article  CAS  Google Scholar 

  33. J.L. Xia, Y. Yang, H. He, C.L. Liang, X.J. Zhao, L. Zheng, C.Y. Ma, Y.D. Zhao, Z.Y. Nie, and G.Z. Qiu, Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans, Int. J. Miner. Process., 94(2010), No. 1–2, p. 52.

    Article  CAS  Google Scholar 

  34. A. Ide-Ektessabi, T. Kawakami, and F. Watt, Distribution and chemical state analysis of iron in the Parkinsonian substantia nigra using synchrotron radiation micro beams, Nucl. Instrum. Methods Phys. Res., Sect. B, 213(2004), p. 590.

    Article  CAS  Google Scholar 

  35. B. Ravel and M. Newville, Athena, Artemis, Hephaestus: Data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12(2005), No. 4, p. 537.

    Article  CAS  Google Scholar 

  36. N. Noël, B. Florian, and W. Sand, AFM & EFM study on attachment of acidophilic leaching organisms, Hydrometallurgy, 104(2010), No. 3–4, p. 370.

    Article  CAS  Google Scholar 

  37. R.Y. Zhang, M. Vera, S. Bellenberg, and W. Sand, Attachment to minerals and biofilm development of extremely acidophilic archaea, Adv. Mater. Res., 825(2013), p. 103.

    Article  Google Scholar 

  38. M.G.M. Fernandez, C. Mustin, P. de Donato, O. Barres, P. Marion, and J. Berthelin, Occurrences at mineral-bacteria interface during oxidation of arsenopyrite by Thiobacillus ferrooxidans, Biotechnol. Bioeng., 46(1995), No. 1, p. 13.

    Article  CAS  Google Scholar 

  39. R.M. Donlan, Biofilms: microbial life on surfaces, Emerg. Infect. Dis., 8(2002), No. 9, p. 881.

    Article  Google Scholar 

  40. A. Echeverría-Vega and C. Demergasso, Copper resistance, motility and the mineral dissolution behavior were assessed as novel factors involved in bacterial adhesion in bioleaching, Hydrometallurgy, 157(2015), p. 107.

    Article  CAS  Google Scholar 

  41. H. Ramírez-Aldaba, O.P. Valles, J. Vazquez-Arenas, J.A. Rojas-Contreras, D. Valdez-Pérez, E. Ruiz-Baca, M. Meraz-Rodríguez, F.S. Sosa-Rodríguez, Á.G. Rodríguez, and R.H. Lara, Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic, Sci. Total Environ., 566–567(2016), p. 1106.

    Article  CAS  Google Scholar 

  42. F.F. Leng, K.Y. Li, X.X. Zhang, Y.Q. Li, Y. Zhu, J.F. Lu, and H.Y. Li, Comparative study of inorganic arsenic resistance of several strains of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans, Hydrometallurgy, 98(2009), No. 3–4, p. 235.

    Article  CAS  Google Scholar 

  43. J. Jin, S.Y. Shi, G.L. Liu, Q.H. Zhang, and W. Cong, Arsenopyrite bioleaching by Acidithiobacillus ferrooxidans in a rotating-drum reactor, Miner. Eng., 39(2012), p. 19.

    Article  CAS  Google Scholar 

  44. R.Y. Zhang, S. Bellenberg, L. Castro, T.R. Neu, W. Sand, and M. Vera, Colonization and biofilm formation of the extremely acidophilic archaeon Ferroplasma acidiphilum, Hydrometallurgy, 150(2014), p. 245.

    Article  CAS  Google Scholar 

  45. S.R. Dave, K.H. Gupta, and D.R. Tipre, Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents, Bioresour. Technol., 99(2008), No. 16, p. 7514.

    Article  CAS  Google Scholar 

  46. K.B. Hallberg, H.M. Sehlin, and E.B. Lindström, Toxicity of arsenic during high temperature bioleaching of gold-bearing arsenical pyrite, Appl. Microbiol. Biotechnol., 45(1996), No. 1–2, p. 212.

    Article  CAS  Google Scholar 

  47. B. Escobar, E. Huenupi, I. Godoy, and J.V. Wiertz, Arsenic precipitation in the bioleaching of enargite by Sulfolobus BC at 70°C, Biotechnol. Lett., 22(2000), No. 3, p. 205.

    Article  CAS  Google Scholar 

  48. C.Y. Jia, D.Z. Wei, W.G. Liu, C. Han, S.L. Gao, and Y.J. Wang, Selective adsorption of bacteria on sulfide minerals surface, Trans. Nonferrous Met. Soc. China, 18(2008), No. 5, p. 1247.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 51774342, 41802038, U1608254, 51861135305, and 41830318) and Beijing Synchrotron Radiation Facility Public User Program (2018-BEPC-PT-002240).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-chang Liu or Jin-lan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Z., Nie, Zy., Liu, Hc. et al. Effect of the surface microstructure of arsenopyrite on the attachment of Sulfobacillus thermosulfidooxidans in the presence of dissolved As(III). Int J Miner Metall Mater 28, 1135–1144 (2021). https://doi.org/10.1007/s12613-020-2231-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2231-9

Keywords

Navigation