Skip to main content

Advertisement

Log in

Motor velocity based multi-objective genetic algorithm controlled navigation method for two-wheeled pioneer P3-DX robot in V-REP scenario

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

This paper proposes the right and left motor velocity based multi-objective genetic algorithm controlled navigation method for Two-Wheeled Pioneer P3-DX Robot (TWPR) in Virtual Robot Experimentation Platform (V-REP) software scenarios. The first objective function is made by taking front, left, and right ultrasonic sensors data and right motor velocity. Similarly, the second objective function is designed using front, left, and right ultrasonic sensors data and left motor velocity. Next, the sensor data are considered independent variables or inputs. The velocities of the motors are chosen as dependent variables or outputs for making multi-objective fitness functions for genetic algorithm (GA). This multi-objective GA makes a sensor-actuator control architecture and helps the TWPR to avoid the obstacles in the simulated scenarios. Further, the successful simulation test results show that the multi-objective GA provided a collision-free smooth, and shortest path for TWPR compared to the previously developed benchmark single objective GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Panahandeh P, Alipour K, Tarvirdizadeh B, Hadi A (2019) A kinematic Lyapunov-based controller to posture stabilization of wheeled mobile robots. Mech Syst Signal Process 134:106319–106337. https://doi.org/10.1016/j.ymssp.2019.106319

    Article  Google Scholar 

  2. Pandey A, Kashyap AK, Parhi DR, Patle BK (2019) Autonomous mobile robot navigation between static and dynamic obstacles using multiple ANFIS architecture. World J Eng 16(2):275–286. https://doi.org/10.1108/WJE-03-2018-0092

    Article  Google Scholar 

  3. Upadhyay S, Ratnoo A (2018) A point-to-ray framework for generating smooth parallel parking maneuvers. IEEE Robot Autom Lett 3(2):1268–1275. https://doi.org/10.1109/LRA.2018.2795655

    Article  Google Scholar 

  4. Wang B, Li S, Guo J, Chen Q (2018) Car-like mobile robot path planning in rough terrain using multi-objective particle swarm optimization algorithm. Neurocomputing 282:42–51. https://doi.org/10.1016/j.neucom.2017.12.015

    Article  Google Scholar 

  5. Bayat F, Najafinia S, Aliyari M (2018) Mobile robots path planning: electrostatic potential field approach. Exp Syst Appl 100:68–78. https://doi.org/10.1016/j.eswa.2018.01.050

    Article  Google Scholar 

  6. Mac TT, Copot C, Tran DT, De Keyser R (2017) A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization. Appl Soft Comput 59:68–76. https://doi.org/10.1016/j.asoc.2017.05.012

    Article  Google Scholar 

  7. de Camargo JTF, de Camargo EAF, Veraszto EV, Barreto G, Cândido J, Aceti PAZ (2019) Route planning by evolutionary computing: an approach based on genetic algorithms. Procedia Comput Sci 149:71–79. https://doi.org/10.1016/j.procs.2019.01.109

    Article  Google Scholar 

  8. Martínez R, Castillo O, Aguilar LT (2009) Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf Sci 179(13):2158–2174. https://doi.org/10.1016/j.ins.2008.12.028

    Article  MATH  Google Scholar 

  9. Castillo O, Trujillo L, Melin P (2007) Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots. Soft Comput 11(3):269–279. https://doi.org/10.1007/s00500-006-0068-4

    Article  Google Scholar 

  10. Mohanta JC, Parhi DR, Patel SK (2011) Path planning strategy for autonomous mobile robot navigation using Petri-GA optimisation. Comput Electr Eng 37(6):1058–1070. https://doi.org/10.1016/j.compeleceng.2011.07.007

    Article  Google Scholar 

  11. Patle BK, Parhi DRK, Jagadeesh A, Kashyap SK (2018) Matrix-binary codes based genetic algorithm for path planning of mobile robot. Comput Electr Eng 67:708–728. https://doi.org/10.1016/j.compeleceng.2017.12.011

    Article  Google Scholar 

  12. Song B, Wang Z, Sheng L (2016) A new genetic algorithm approach to smooth path planning for mobile robots. Assem Autom 36(2):138–145. https://doi.org/10.1108/AA-11-2015-094

    Article  Google Scholar 

  13. Martínez R, Castillo O, Aguilar LT (2008) Intelligent control for a perturbed autonomous wheeled mobile robot using type-2 fuzzy logic and genetic algorithms. J Autom Mob Robot Intell Syst 2:12–22. https://doi.org/10.14313/JAMRIS/2-2008/32

    Article  Google Scholar 

  14. Zhang X, Zhao Y, Deng N, Guo K (2016) Dynamic path planning algorithm for a mobile robot based on visible space and an improved genetic algorithm. Int J Adv Robot Syst 13(3):1–17. https://doi.org/10.5772/63484

    Article  Google Scholar 

  15. Narasimhan GE, Bettyjane J (2020) Implementation and study of a novel approach to control adaptive cooperative robot using fuzzy rules. Int J Inf Technol. https://doi.org/10.1007/s41870-020-00459-z

    Article  Google Scholar 

  16. Wang M (2021) Real-time path optimization of mobile robots based on improved genetic algorithm. J Syst Control Eng 235(5):646–651. https://doi.org/10.1177/0959651820952207

    Article  Google Scholar 

  17. Teli TA, Wani MA (2021) A fuzzy based local minima avoidance path planning in autonomous robots. Int J Inf Technol 13(1):33–40. https://doi.org/10.1007/s41870-020-00547-0

    Article  Google Scholar 

  18. Yasin JN, Mohamed SA, Haghbayan MH, Heikkonen J, Tenhunen H, Plosila J (2021) Low-cost ultrasonic based object detection and collision avoidance method for autonomous robots. Int J Inf Technol 13(1):97–107. https://doi.org/10.1007/s41870-020-00513-w

    Article  Google Scholar 

  19. Khan H, Khatoon S, Gaur P (2021) Comparison of various controller design for the speed control of DC motors used in two wheeled mobile robots. Int J Inf Technol 13:713–720. https://doi.org/10.1007/s41870-020-00577-8

    Article  Google Scholar 

  20. Jiang M, Fan X, Pei Z, Jiang J, Hu Y, Wang Q (2014) Robot path planning method based on improved genetic algorithm. Sensors & Transducers 166(3):255–260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Pandey.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panwar, V.S., Pandey, A. & Hasan, M.E. Motor velocity based multi-objective genetic algorithm controlled navigation method for two-wheeled pioneer P3-DX robot in V-REP scenario. Int. j. inf. tecnol. 13, 2101–2108 (2021). https://doi.org/10.1007/s41870-021-00731-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-021-00731-w

Keywords

Navigation