Skip to main content
Log in

The diagnostic performance of on-site workstation-based computed tomography-derived fractional flow reserve. Comparison with myocardium perfusion imaging

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

To compare the diagnostic performance of on-site workstation-based computed tomography-derived fractional flow reserve (CT-FFR)Few data of CT-FFR were reported regarding the diagnostic performance for detecting hemodynamically significant coronary artery disease (CAD). This retrospective single-center analysis included 132 vessels in 77 patients who underwent CT angiography, myocardial perfusion imaging (MPI), and invasive FFR. The correlation coefficient between CT-FFR and invasive FFR and optimal cut-off value for CT-FFR to identify invasive FFR ≤ 0.8 were evaluated. The diagnostic accuracies of CT- FFR, and MPI were evaluated using an area under the receiver-operating characteristic curve (AUC) with invasive FFR as a reference standard. Diagnostic performance of CT-FFR was also evaluated concerning lesion characteristics, including intermediate lesions, left main lesions, tandem lesions, and/or diffuse lesions, and coronary calcium (Agatston score over 400). The Receiver Operating Characteristic curve analysis showed that the optimal cut-off value of CT-FFR for detecting invasive FFR ≤ 0.80 was 0.80 [AUC = 0.83, 95%CI: 0.76–0.90). Diagnostic sensitivity, specificity, positive and negative predictive value, and accuracy of CT-FFR when compared with those of MPI regarding per-patient analysis were 93% vs. 63%, 48% vs. 61%, 81% vs. 79%, 73% vs. 41%, and 79% vs. 62%, respectively, and for per-vessel analysis were 89% vs. 24%, 66% vs. 82%, 75% vs. 61%, 83% vs. 48%, and 78% vs. 51%, respectively. The AUC of the CT-FFR was significantly higher than MPI (0.83 vs. 0.57, p < 0.0001) regarding the per-vessel analysis. No differences in the diagnostic performance of CT-FFR were noted in the presence of intermediate lesions, left main lesions, tandem lesions, and/or diffuse lesions, and severe coronary calcium. On-site CT-FFR delivered a higher diagnostic performance than MPI for detecting CAD with invasive FFR ≤ 0.8, indicating the potential of CT-FFR as the gatekeeper of invasive coronary angiogram as well as percutaneous coronary intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Knudtson M, Dada M, Casperson P, Harris CL, Chaitman BR, Shaw L, Gosselin G, Nawaz S, Title LM, Gau G, Blaustein AS, Booth DC, Bates ER, Spertus JA, Berman DS, Mancini GB, Weintraub WS, Group CTR (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356(15):1503–1516

    Article  Google Scholar 

  2. Shiba C, Chikamori T, Hida S, Igarashi Y, Tanaka H, Hirose K, Ohtaki Y, Usui Y, Miyagi M, Hatano T, Yamashina A (2009) Important parameters in the detection of left main trunk disease using stress myocardial perfusion imaging. J Cardiol 53(1):43–52

    Article  Google Scholar 

  3. Berman DS, Kang X, Slomka PJ, Gerlach J, de Yang L, Hayes SW, Friedman JD, Thomson LE, Germano G (2007) Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol 14(4):521–528

    Article  Google Scholar 

  4. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, Cole J, Dolor RJ, Fordyce CB, Huang M, Khan MA, Kosinski AS, Krucoff MW, Malhotra V, Picard MH, Udelson JE, Velazquez EJ, Yow E, Cooper LS, Lee KL, Investigators P (2015) Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 372(14):1291–1300

    Article  CAS  Google Scholar 

  5. Bech GJ, De Bruyne B, Pijls NH, de Muinck ED, Hoorntje JC, Escaned J, Stella PR, Boersma E, Bartunek J, Koolen JJ, Wijns W (2001) Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 103(24):2928–2934

    Article  CAS  Google Scholar 

  6. De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, Jagic N, Mobius-Winckler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engstrom T, Oldroyd K, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Limacher A, Nuesch E, Juni P, Investigators FT (2014) Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med 371(13):1208–1217

    Article  Google Scholar 

  7. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, Investigators FS (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224

    Article  Google Scholar 

  8. Ko BS, Cameron JD, Munnur RK, Wong DTL, Fujisawa Y, Sakaguchi T, Hirohata K, Hislop-Jambrich J, Fujimoto S, Takamura K, Crossett M, Leung M, Kuganesan A, Malaiapan Y, Nasis A, Troupis J, Meredith IT, Seneviratne SK (2017) Noninvasive CT-Derived FFR based on structural and fluid analysis: a comparison with invasive FFR for detection of functionally significant stenosis. JACC Cardiovasc Imaging 10(6):663–673

    Article  Google Scholar 

  9. Fujimoto S, Kawasaki T, Kumamaru KK, Kawaguchi Y, Dohi T, Okonogi T, Ri K, Yamada S, Takamura K, Kato E, Kato Y, Hiki M, Okazaki S, Aoki S, Mitsouras D, Rybicki FJ, Daida H (2019) Diagnostic performance of on-site computed CT-fractional flow reserve based on fluid structure interactions: comparison with invasive fractional flow reserve and instantaneous wave-free ratio. Eur Heart J Cardiovasc Imaging 20(3):343–352

    Article  Google Scholar 

  10. Miyajima K, Motoyama S, Sarai M, Kawai H, Nagahara Y, Matsumoto R, Fujiwara W, Muramatsu T, Takahashi H, Naruse H, Ishii J, Kondo T, Narula J, Izawa H, Ozaki Y (2020) On-site assessment of computed tomography-derived fractional flow reserve in comparison with myocardial perfusion imaging and invasive fractional flow reserve. Heart Vessels 35(10):1331–1340

    Article  Google Scholar 

  11. Kato E, Fujimoto S, Kumamaru KK, Kawaguchi YO, Dohi T, Aoshima C, Kamo Y, Takamura K, Kato Y, Hiki M, Okai I, Okazaki S, Aoki S, Daida H (2020) Adjustment of CT-fractional flow reserve based on fluid-structure interaction underestimation to minimize 1-year cardiac events. Heart Vessels 35(2):162–169

    Article  Google Scholar 

  12. Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61(22):2233–2241

    Article  Google Scholar 

  13. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, De France T, Lansky A, Leipsic J, Min JK (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58(19):1989–1997

    Article  Google Scholar 

  14. Min JK, Berman DS, Budoff MJ, Jaffer FA, Leipsic J, Leon MB, Mancini GB, Mauri L, Schwartz RS, Shaw LJ (2011) Rationale and design of the DeFACTO (determination of fractional flow reserve by anatomic computed tomographic angiography) study. J Cardiovasc Comput Tomogr 5(5):301–309

    Article  Google Scholar 

  15. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308(12):1237–1245

    Article  CAS  Google Scholar 

  16. Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Botker HE, Achenbach S, Group NXTTS (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol 63(12):1145–1155

    Article  Google Scholar 

  17. Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G, Hink U, Schuchlenz HW, Feuchtner G, Gilard M, Andreini D, Jensen JM, Hadamitzky M, Chiswell K, Cyr D, Wilk A, Wang F, Rogers C, De Bruyne B, Investigators P (2015) Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study. Eur Heart J 36(47):3359–3367

    Article  CAS  Google Scholar 

  18. Hlatky MA, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G, Hink U, Schuchlenz HW, Feuchtner G, Gilard M, Andreini D, Jensen JM, Hadamitzky M, Wilk A, Wang F, Rogers C, Douglas PS, Investigators P (2015) Quality-of-life and economic outcomes of assessing fractional flow reserve with computed tomography angiography: PLATFORM. J Am Coll Cardiol 66(21):2315–2323

    Article  Google Scholar 

  19. Curzen NP, Nolan J, Zaman AG, Norgaard BL, Rajani R (2016) Does the routine availability of CT-derived FFR influence management of patients with stable chest pain compared to CT angiography alone?: The FFRCT RIPCORD study. JACC Cardiovasc Imaging 9(10):1188–1194

    Article  Google Scholar 

  20. Hamon M, Morello R, Riddell JW, Hamon M (2007) Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiography–meta-analysis. Radiology 245(3):720–731

    Article  Google Scholar 

  21. Norgaard BL, Gaur S, Leipsic J, Ito H, Miyoshi T, Park SJ, Zvaigzne L, Tzemos N, Jensen JM, Hansson N, Ko B, Bezerra H, Christiansen EH, Kaltoft A, Lassen JF, Botker HE, Achenbach S (2015) Influence of coronary calcification on the diagnostic performance of CT angiography derived FFR in coronary artery disease: a substudy of the NXT Trial. JACC Cardiovasc Imaging 8(9):1045–1055

    Article  Google Scholar 

  22. Tesche C, De Cecco CN, Baumann S, Renker M, McLaurin TW, Duguay TM, Bayer RR 2nd, Steinberg DH, Grant KL, Canstein C, Schwemmer C, Schoebinger M, Itu LM, Rapaka S, Sharma P, Schoepf UJ (2018) Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling. Radiology 288(1):64–72

    Article  Google Scholar 

  23. van Rosendael AR, Maliakal G, Kolli KK, Beecy A, Al’Aref SJ, Dwivedi A, Singh G, Panday M, Kumar A, Ma X, Achenbach S, Al-Mallah MH, Andreini D, Bax JJ, Berman DS, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow BJW, Cury RC, DeLago A, Feuchtner G, Hadamitzky M, Hausleiter J, Kaufmann PA, Kim YJ, Leipsic JA, Maffei E, Marques H, Pontone G, Raff GL, Rubinshtein R, Shaw LJ, Villines TC, Gransar H, Lu Y, Jones EC, Pena JM, Lin FY, Min JK (2018) Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. J Cardiovasc Comput Tomogr 12(3):204–209

    Article  Google Scholar 

  24. Tesche C, Otani K, De Cecco CN, Coenen A, De Geer J, Kruk M, Kim YH, Albrecht MH, Baumann S, Renker M, Bayer RR, Duguay TM, Litwin SE, Varga-Szemes A, Steinberg DH, Yang DH, Kepka C, Persson A, Nieman K, Schoepf UJ (2020) Influence of coronary calcium on diagnostic performance of machine learning CT-FFR: results from machine registry. JACC Cardiovasc Imaging 13(3):760–770

    Article  Google Scholar 

Download references

Acknowledgements

All authors take responsibility for all aspects of the reliability and freedom from a bias of the data presented and their discussed interpretation. The authors thanks Toshio Ueda, who oversaw coronary CTA and analysis for CT-FFR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Fukuoka.

Ethics declarations

Conflict of interest

All author and co-author have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuoka, R., Kawasaki, T., Umeji, K. et al. The diagnostic performance of on-site workstation-based computed tomography-derived fractional flow reserve. Comparison with myocardium perfusion imaging. Heart Vessels 37, 22–30 (2022). https://doi.org/10.1007/s00380-021-01897-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-021-01897-w

Keywords

Navigation