Skip to main content

Advertisement

Log in

Production potential, biodiversity and soil properties of forest reclamations: Opportunities or risk of introduced coniferous tree species under climate change?

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In the time of ongoing climate change and the increasing area of post-mining landscape, the successful afforestation of reclamation sites by suitable adaptive tree species is gaining in importance. One of possible ways may be the use of introduced tree species, which is, however, a controversial topic in relation to risks for forest management and nature conservation. The objective of this study was to comprehensively evaluate the forest stands (age 48 years) of 9 introduced and 3 native coniferous tree species in lowland post-mining coal site of the Czech Republic. The research was focused on production potential, health status, resistance to climate change, carbon sequestration, biodiversity and soil properties. The highest timber production, biomass and carbon stock (49–95% above average), was observed in case of Pinus sylvestris, P. nigra and Pseudotsuga menziesii. On the other hand, unsuitable habitat, insect and pathogens caused poor health status and extremely low production parameters (by 55–62% than average) in Pinus strobus and P. rotundata. In terms of climate, Pinus sylvestris, P. nigra, Larix decidua, Pseudotsuga menziesii and Picea omorika were the most resistance tree species in relation to climatic extremes. Conversely, Pinus rotundata, P. strobus, P. ponderosa, Picea pungens and P. abies were very sensitive to climate events, especially to the lack of precipitation in vegetation period with synergism of high temperature. In terms of soil parameters, the content of plant available nutrients (K, Ca, Mg) was adequate except P deficiency. The highest soil reaction was detected for Pinus nigra and P. sylvestris (pH 6.9–7.1) compared to Picea mariana (pH 4.8). The benefits of “suitable” introduced tree species (Pinus nigra, Pseudotsuga menziesii) are high timber production potential and good adaptation and mitigation of the changing climate; however, native tree species (Pinus sylvestris, Larix decidua) can provide better environmental benefits on reclamation sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Augusto L, Dupouey J-L, Ranger J (2003) Soil detritivore macro-invertebrate assemblages throughout a managed beech rotation. Ann for Sci 60:823–831. https://doi.org/10.1051/forest

    Article  Google Scholar 

  • Bahnemiri AK, Abkenar KT, Kooch Y, Salehi A (2019) Valuation of soil and litter quality indices using analysis hierarchical process (AHP) in Hyrcanian beech forest stands, Northern Iran (Case study: Korkoroud forests in Noshahr). J for Sci 65:397–407. https://doi.org/10.17221/54/2019-JFS

    Article  CAS  Google Scholar 

  • Barčić D, Hršak V, Španjol Ž (2006) The ameliorative effects of pine cultures on forest sites on the island of Rab in Southwest Croatia. For Ecol Manage 237:39–46. https://doi.org/10.1016/j.foreco.2006.09.065

    Article  Google Scholar 

  • Baumann K, Rumpelt A, Schneider BU, Marschner P, Hüttl RF (2006) Seedling biomass and element content of Pinus sylvestris and Pinus nigra grown in sandy substrates with lignite. Geoderma 136:573–578. https://doi.org/10.1016/j.geoderma.2006.04.013

    Article  CAS  Google Scholar 

  • Bazzichetto M, Malavasi M, Bartak V, Acosta ATR, Rocchini D, Carranza ML (2018) Plant invasion risk: a quest for invasive species distribution modelling in managing protected areas. Ecol Indic 95:311–319. https://doi.org/10.1016/j.ecolind.2018.07.046

    Article  Google Scholar 

  • Bellassen V, Luyssaert S (2014) Carbon sequestration: managing forests in uncertain times. Nature 506:153–155. https://doi.org/10.1038/506153a

    Article  PubMed  Google Scholar 

  • Bello J, Vallet P, Perot T, Balandier P, Seigner V, Perret S, Couteau C, Korboulewsky N (2019) How do mixing tree species and stand density affect seasonal radial growth during drought events? For Ecol Manage 432:436–445. https://doi.org/10.1016/j.foreco.2018.09.044

    Article  Google Scholar 

  • Beran F (2018) Introdukované dřeviny v lesním hospodářství ČR—přehled., in: Podrázský, V., Vacek, Z. (Eds.), Introdukované Dřeviny Jako Součást Českého Lesnictví. Česká lesnická společnost, pp. 7–16.

  • Binkley D (1986) Forest nutrition management. Wiley J, New York

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311. https://doi.org/10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  • Boczoń A, Kowalska A, Ksepko M, Sokołowski K (2018) Climate warming and drought in the Bialowieza Forest from 1950–2015 and their impact on the dieback of Norway spruce stands. Water 10:1502. https://doi.org/10.3390/w10111502

    Article  Google Scholar 

  • Boisvert-Marsh L, Périé C, de Blois S (2019) Divergent responses to climate change and disturbance drive recruitment patterns underlying latitudinal shifts of tree species. J Ecol 107:1956–1969. https://doi.org/10.1111/1365-2745.13149

    Article  Google Scholar 

  • Bosela M, Štefančík I, Petráš R, Vacek S (2016) The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agric for Meteorol 222:21–31. https://doi.org/10.1016/j.agrformet.2016.03.005

    Article  Google Scholar 

  • Bradshaw A (1997) Restoration of mined lands—using natural processes. Ecol Eng 8:255–269. https://doi.org/10.1023/a:1005177815154

    Article  Google Scholar 

  • Brom J, Nedbal V, Procházka J, Pecharová E (2012) Changes in vegetation cover, moisture properties and surface temperature of a brown coal dump from 1984 to 2009 using satellite data analysis. Ecol Eng 43:45–52. https://doi.org/10.1016/j.ecoleng.2011.03.001

    Article  Google Scholar 

  • Brundu G, Pauchard A, Pyšek P, Pergl J, Bindewald AM, Brunori A, Canavan S, Campagnaro T, Celesti-Grapow L, de Sá Dechoum M, Dufour-Dror JM, Essl F, Flory SL, Genovesi P, Guarino F, Guangzhe L, Hulme PE, Jäger H, Kettle CJ, Krumm F, Langdon B, Lapin K, Lozano V, Le Roux JJ, Novoa A, Nuñez MA, Porté AJ, Silva JS, Schaffner U, Sitzia T, Tanner R, Tshidada N, Vítková M, Westergren M, Wilson JRU, Richardson DM (2020) Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota 61:65–116. https://doi.org/10.3897/neobiota.65.58380

    Article  Google Scholar 

  • Brunet J (2007) Plant colonization in heterogeneous landscapes: An 80-year perspective on restoration of broadleaved forest vegetation. J Appl Ecol 44:563–572. https://doi.org/10.1111/j.1365-2664.2007.01297.x

    Article  Google Scholar 

  • Bublinec E (1994) Koncentrácia, akumulácia a kolobeh prvkov v bukovom a smrekovom ekosystéme. Acta Dendrobiologica, Bratislava, Veda.

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457. https://doi.org/10.1126/science.1155458

    Article  CAS  Google Scholar 

  • Castro-Díez P, Godoy O, Saldaña A, Richardson DM (2011) Predicting invasiveness of Australian acacias on the basis of their native climatic affinities, life history traits and human use. Divers Distrib 17:934–945. https://doi.org/10.1111/j.1472-4642.2011.00778.x

    Article  Google Scholar 

  • Černý K, Pešková V, Soukup F, Havrdová L, Strnadová V, Zahradník D, Hrabětová M (2016) Gemmamyces bud blight of Picea pungens: a sudden disease outbreak in Central Europe. Plant Pathol 65:1267–1278. https://doi.org/10.1111/ppa.12513

    Article  Google Scholar 

  • Chodak M, Niklińska M (2010) The effect of different tree species on the chemical and microbial properties of reclaimed mine soils. Biol Fertil Soils 46:555–566. https://doi.org/10.1007/s00374-010-0462-z

    Article  CAS  Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453. https://doi.org/10.2307/1931034

    Article  Google Scholar 

  • Crookston NL, Stage AR (1999) Percent canopy cover and stand structure statistics from the Forest Vegetation Simulator. USDA Forest Service, Rocky Mountain Research Station, Ogden

    Book  Google Scholar 

  • Cukor J, Vacek Z, Linda R, Bílek L (2017) Carbon sequestration in soil following afforestation of former agricultural land in the Czech Republic. Cent Eur for J 63:97–104. https://doi.org/10.1515/forj-2017-0011

    Article  Google Scholar 

  • Cukor J, Vacek Z, Linda R, Prasad RS, Vacek S (2019) Afforested farmland vs. forestland: Effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests. PLoS ONE 14:1–25. https://doi.org/10.1371/journal.pone.0221082

    Article  CAS  Google Scholar 

  • Cukor J, Zeidler A, Vacek Z, Vacek S, Šimůnek V, Gallo J (2020) Comparison of growth and wood quality of Norway spruce and European larch: effect of previous land use. Eur J for Res 139:459–472. https://doi.org/10.1007/s10342-020-01259-7

    Article  Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234. https://doi.org/10.1641/0006-3568(2001)051

    Article  Google Scholar 

  • Davies S, Bathgate S, Petr M, Gale A, Patenaude G, Perks M (2020) Drought risk to timber production—a risk versus return comparison of commercial conifer species in Scotland. For Policy Econ 117:102189. https://doi.org/10.1016/j.forpol.2020.102189

    Article  Google Scholar 

  • Desplanque C, Rolland C, Schweingruber FH (1999) Influence of species and abiotic factors on extreme tree ring modulation: Picea abies and Abies alba in Tarentaise and Maurienne (French Alps). Trees - Struct Funct 13:218–227. https://doi.org/10.1007/s004680050236

    Article  Google Scholar 

  • Dimitrovský K, Kupka I, Popperl I (2007) Les jako důležitý fenomén obnovy průmyslové krajiny., in: Obnova lesního prostředí při zalesňování nelesních a degradovaných půd. ČZU v Praze, Kostelec nad Černými lesy, pp 20–27

  • Dimitrovský K, Modrá B, Prokopová D (2010) Produkční a mimoprodukční význam antropogenních substrátů na výsypkách sokolovské uhelné pánve. Zprav Hnědé Uhlí 4:8–16

    Google Scholar 

  • Dodet M, Collet C (2012) When should exotic forest plantation tree species be considered as an invasive threat and how should we treat them? Biol Invasions 14:1765–1778. https://doi.org/10.1007/s10530-012-0202-4

    Article  Google Scholar 

  • Doležalová J, Vojar J, Smolová D, Solský M, Kopecký O (2012) Technical reclamation and spontaneous succession produce different water habitats: a case study from Czech post-mining sites. Ecol Eng 43:5–12. https://doi.org/10.1016/j.ecoleng.2011.11.017

    Article  Google Scholar 

  • Dragoun L, Stolariková R, Merganič J, Šálek L, Krykorková J (2015) Porovnání vlivu příměsi na růstové veličiny, strukturu a stabilitu porostu borovice lesní (Pinus sylvestris L.) na antropogenních půdách sokolovského regionu. For J 61:44–51. https://doi.org/10.1515/forj-2015-0013

    Article  Google Scholar 

  • Drexhage M, Colin F (2001) Estimating root system biomass from breast-height diameters. Forestry 74:491–497

    Article  Google Scholar 

  • Dulamsuren C, Hauck M, Kopp G, Ruff M, Leuschner C (2017) European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees Struct Funct 31:673–686. https://doi.org/10.1007/s00468-016-1499-x

    Article  Google Scholar 

  • Essl F (2005) Verbreitung, Status und Habitatbindung dersubspontanen Beständeder Douglasie (Pseudotsuga menziesii) in Österreich. Phyton 45:117–144

    Google Scholar 

  • Essl F, Moser D, Dullinger S, Mang T, Hulme PE (2010) Selection for commercial forestry determines global patterns of alien conifer invasions. Divers Distrib 16:911–921. https://doi.org/10.1111/j.1472-4642.2010.00705.x

    Article  Google Scholar 

  • Fabrika M, Ďurský J (2005) Algorithms and software solution of thinning models for SIBYLA growth simulator. J for Sci 51:431–445

    Article  Google Scholar 

  • Fagiewicz K, Łowicki D (2019) The dynamics of landscape pattern changes in mining areas: the case study of the Adamów-Koźmin Lignite Basin. Quaest Geogr 38:151–162. https://doi.org/10.2478/quageo-2019-0046

    Article  Google Scholar 

  • FAO (2010) Global doi 2010. FAO, Rome

    Google Scholar 

  • Felton A, Boberg J, Björkman C, Widenfalk O (2013) Identifying and managing the ecological risks of using introduced tree species in Sweden’s production forestry. For Ecol Manage 307:165–177. https://doi.org/10.1016/j.foreco.2013.06.059

    Article  Google Scholar 

  • Felton A, Lindbladh M, Brunet J, Fritz Ö (2010) Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. For Ecol Manage 260:939–947. https://doi.org/10.1016/j.foreco.2010.06.011

    Article  Google Scholar 

  • Fettweis U, Bens O, Hüttl RF (2005) Accumulation and properties of soil organic carbon at reclaimed sites in the Lusatian lignite mining district afforested with Pinus sp. Geoderma 129:81–91. https://doi.org/10.1016/j.geoderma.2004.12.034

    Article  CAS  Google Scholar 

  • Finch OD, Szumelda A (2007) Introduction of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) into Western Europe: Epigaeic arthropods in intermediate-aged pure stands in northwestern Germany. For Ecol Manage 242:260–272. https://doi.org/10.1016/j.foreco.2007.01.039

    Article  Google Scholar 

  • Flannigan M, Stocks B, Turetsky M, Wotton M (2009) Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob Chang Biol 15:549–560. https://doi.org/10.1111/j.1365-2486.2008.01660.x

    Article  Google Scholar 

  • Europe F (2015) State of Europe’s Forests 2015. Forest Europe Liaison Unit Madrid, Madrid

    Google Scholar 

  • Frischbier N, Nikolova PS, Brang P, Klumpp R, Aas G, Binder F (2019) Climate change adaptation with non-native tree species in Central European forests: early tree survival in a multi-site field trial. Eur J for Res 138:1015–1032. https://doi.org/10.1007/s10342-019-01222-1

    Article  Google Scholar 

  • Frouz J, Prach K, Pižl V, Háněl L, Starý J, Tajovský K, Materna J, Balík V, Kalčík J, Řehounková K (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur J Soil Biol 44:109–121. https://doi.org/10.1016/j.ejsobi.2007.09.002

    Article  Google Scholar 

  • Füldner K (1995) Strukturbeschreibung in Mischbeständen [Structure description of mixed stands]. Forstarchiv 66:235–606

    Google Scholar 

  • Garcia-Gonzalo J, Peltola H, Briceno-Elizondo E, Kellomäki S (2007) Changed thinning regimes may increase carbon stock under climate change: a case study from a Finnish boreal forest. Clim Change 81:431–454. https://doi.org/10.14214/df.42

    Article  CAS  Google Scholar 

  • Gerke HH, Hangen E, Schaaf W, Hüttl RF (2001) Spatial variability of potential water repellency in a lignitic mine soil afforested with Pinus nigra. Geoderma 102:255–274. https://doi.org/10.1016/S0016-7061(01)00036-2

    Article  CAS  Google Scholar 

  • Giraudoux P (2018) Spatial analysis and data mining for field ecologists. R Package Version 1:678

    Google Scholar 

  • Goßner M, Ammer U (2006) The effects of Douglas-fir on tree-specific arthropod communities in mixed species stands with European beech and Norway spruce. Eur J for Res 125:221–235. https://doi.org/10.1007/s10342-006-0113-y

    Article  Google Scholar 

  • Goßner MM, Chao A, Bailey RI, Prinzing A (2009) Native fauna on exotic trees: phylogenetic conservatism and geographic contingency in two lineages of phytophages on two lineages of trees. Am Nat 173:599–614. https://doi.org/10.1086/597603

    Article  PubMed  Google Scholar 

  • Goto S, Iijima H, Ogawa H, Ohya K (2011) Outbreeding depression caused by intraspecific hybridization between local and Nonlocal Genotypes in Abies sachalinensis. Restor Ecol 19:243–250. https://doi.org/10.1111/j.1526-100X.2009.00568.x

    Article  Google Scholar 

  • Gregow H, Laaksonen A, Alper ME (2017) Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci Rep 7:1–7. https://doi.org/10.1038/srep46397

    Article  CAS  Google Scholar 

  • Grissino-Mayer HD, Holmes RL, Fritts HC (1992) International tree-ring data bank program library: user´s manual. University of Arizona, Tuscon, USA, Tuscon, Laboratory of Tree-Ring Research

    Google Scholar 

  • Grüneberg E, Ziche D, Wellbrock N (2014) Organic carbon stocks and sequestration rates of forest soils in Germany. Glob Chang Biol 20:2644–2662. https://doi.org/10.1111/gcb.12558

    Article  PubMed  PubMed Central  Google Scholar 

  • Haysom K, Murphy S, (2003) The status of invasiveness of forest tree species outside their natural habitat: a global review and discussion paper. In: Forest Health and Biosecurity Working paper FBS/3E. FAO, Rome. (No. FBS/3E), Forest Health and Biosecurity Working Paper. Rome.

  • Helingerová M, Frouz J, Šantrůčková H (2010) Microbial activity in reclaimed and unreclaimed post-mining sites near Sokolov (Czech Republic). Ecol Eng 36:768–776. https://doi.org/10.1016/j.ecoleng.2010.01.007

    Article  Google Scholar 

  • Henin JM, Pollet C, Jourez B, Hébert J (2018) Impact of tree growth rate on the mechanical properties of douglas fir lumber in Belgium. Forests 9:1–13. https://doi.org/10.3390/f9060342

    Article  Google Scholar 

  • Hlásny T, Mátyás C, Seidl R, Kulla L, Merganičová K, Trombik J, Dobor L, Barcza Z, Konôpka B (2014) Climate change increases the drought risk in Central European forests: What are the options for adaptation? For J 60:5–18. https://doi.org/10.2478/forj-2014-0001

    Article  Google Scholar 

  • Hlásny T, Zajíčková L, Turčáni M, Holuša J, Sitková Z (2011) Geographical variability of spruce bark beetle development under climate change in the Czech Republic. J for Sci 57:242–249. https://doi.org/10.17221/104/2010-jfs

    Article  Google Scholar 

  • Hrib M (2008) Introdukované dřeviny v České republice. In: Šálek L, Kyzlík P, Kubátová I (eds) Pěstování Nepůvodních Dřevin. Kroměříž, pp 4–8

  • Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847. https://doi.org/10.1111/j.1365-2664.2006.01227.x

    Article  Google Scholar 

  • Itter MS, D’Orangeville L, Dawson A, Kneeshaw D, Duchesne L, Finley AO (2019) Boreal tree growth exhibits decadal-scale ecological memory to drought and insect defoliation, but no negative response to their interaction. J Ecol 107:1288–1301. https://doi.org/10.1111/1365-2745.13087

    Article  Google Scholar 

  • Jaehne S, Dohrenbusch A (1997) Ein Verfahren zur Beurteilung der Bestandesdiversität. Forstwissenschaftliches Cent 116:333–345

    Article  Google Scholar 

  • Jagodziński AM, Dyderski MK, Gęsikiewicz K, Horodecki P (2019) Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland. Eur J for Res 138:673–683. https://doi.org/10.1007/s10342-019-01197-z

    Article  Google Scholar 

  • Jiskra J (1997) Z historie uhelných lomů od Johanna Davida Edler von Starcka k Sokolovské uhelné akciové společnosti. Sokolovská uhelná, a.s., Sokolov.

  • Kantor P (2008) Production potential of Douglas fir at mesotrophic sites of Křtiny Training Forest Enterprise. J for Sci 54:321–332. https://doi.org/10.17221/35/2008-jfs

    Article  Google Scholar 

  • Kapeller S, Lexer MJ, Geburek T, Hiebl J, Schueler S (2012) Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: selecting appropriate provenances for future climate. For Ecol Manage 271:46–57. https://doi.org/10.1016/j.foreco.2012.01.039

    Article  Google Scholar 

  • Kärhä K, Anttonen T, Poikela A, Palander T, Laurén A, Peltola H, Nuutinen Y (2018) Evaluation of salvage logging productivity and costs in windthrown Norway spruce-dominated forests. Forests 9:280. https://doi.org/10.3390/f9050280

    Article  Google Scholar 

  • Keplin B, Hüttl RF (2001) Decomposition of root litter in Pinus sylvestris L. and Pinus nigra stands on carboniferous substrates in the Lusatian lignite mining district. Ecol Eng 17:285–296. https://doi.org/10.1016/S0925-8574(00)00145-2

    Article  Google Scholar 

  • Knibbe B (2007) Personal analysis system for treering research—PAST 4.2. SCIEM, Vienna

  • Knoche D (2005) Effects of stand conversion by thinning and underplanting on water and element fluxes of a pine ecosystem (P. sylvestris L.) on lignite mine spoil. For Ecol Manage 212:214–220. https://doi.org/10.1016/j.foreco.2005.03.038

    Article  Google Scholar 

  • Kohler M, Kunz J, Herrmann J, Hartmann P, Jansone L, Puhlmann H, von Wilpert K, Bauhus J (2019) The Potential of liming to improve drought tolerance of Norway spruce [Picea abies (L.) Karst.]. Front Plant Sci 10:1–14. https://doi.org/10.3389/fpls.2019.00382

    Article  Google Scholar 

  • Koivuranta L, Latva-Karjanmaa T, Pulkkinen P (2012) The effect of temperature on seed quality and quantity in crosses between European (Populus tremula) and hybrid aspens (P. tremula × P. tremuloides). Silva Fenn. 46:17–26. https://doi.org/10.14214/sf.63

    Article  Google Scholar 

  • Kolář T, Čermák P, Trnka M, Žid T, Rybníček M (2017) Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric for Meteorol 239:24–33. https://doi.org/10.1016/j.agrformet.2017.02.028

    Article  Google Scholar 

  • Köppen W (1936) Das Geographische System der Klimate, Handbuch der Klimatologie. Gebrüder Borntraeger, Berlin.

  • Kraft G (1884) Beiträgezur zur lehre von den durchforstungen. schlagstellungen und lichtungshieben. Klindworth, Hannover.

  • Král D (2002) Assessing the growth of Picea omorika [Panč.] Purkyně in the Masaryk Forest Training Forest Enterprise at Křtiny. J For Sci 48:388–398. https://doi.org/10.17221/11898-jfs

  • Kubeček J, Štefančík I, Podrázský V, Longauer R (2014) Results of the research of Douglas-fir in the Czech Republic and Slovakia: a review. Lesn Cas for J 60:116–124

    Google Scholar 

  • Kupka I, Dimitrovský K (2011) Výsledky Testování Vybraných Dřevin Pro Lesnické Rekultivace Na Sokolovsku : Review Test Results of Selected Tree Species for Forestry Reclamations in the Sokolov Region : Review. Zpravy Lesn. Vyzk Reports for Res 56:52–56

    Google Scholar 

  • Kuter N (2013) Reclamation of degraded landscapes due to opencast mining. Advances in landscape architecture. IntechOpen, pp 823–858. https://doi.org/10.5772/55796

  • Kuznetsova T, Lukjanova A, Mandre M, Lõhmus K (2011) Aboveground biomass and nutrient accumulation dynamics in young black alder, silver birch and Scots pine plantations on reclaimed oil shale mining areas in Estonia. For Ecol Manage 262:56–64. https://doi.org/10.1016/j.foreco.2010.09.030

    Article  Google Scholar 

  • Kuznetsova T, Mandre M, Klõšeiko J, Pärn H (2010) A comparison of the growth of Scots pine (Pinus sylvestris L.) in a reclaimed oil shale post-mining area and in a Calluna site in Estonia. Environ Monit Assess 166:257–265. https://doi.org/10.1007/s10661-009-0999-1

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22. https://doi.org/10.1016/j.geoderma.2004.01.032

    Article  CAS  Google Scholar 

  • Lal R, Follett RF, Stewart BA, Kimble JM (2007) Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci 172:943–956. https://doi.org/10.1097/ss.0b013e31815cc498

    Article  CAS  Google Scholar 

  • Lanz B, Dietz S, Swanson T (2018) The expansion of modern agriculture and global biodiversity decline: an integrated assessment. Ecol Econ 144:260–277. https://doi.org/10.1016/j.ecolecon.2017.07.018

    Article  Google Scholar 

  • Lawrence MG, Schäfer S, Muri H, Scott V, Oschlies A, Vaughan NE, Boucher O, Schmidt H, Haywood J, Scheffran J (2018) context of the Paris agreement temperature goals. Nat Commun 9:1–19. https://doi.org/10.1038/s41467-018-05938-3

    Article  CAS  Google Scholar 

  • Ledermann T, Neumann M (2005) Ergebnisse vorläufiger Untersuchungen zur Erstellung von Biomassefunktionen aus Daten alter Dauerversuchsflächen. Deutscher Verband Forstlicher Forschungsanstalten, Sektion Ertragskunde. Dtsch. Verband Forstl. Forschungsanstalten. Sekt Ertragskd 9:143–152

    Google Scholar 

  • Lima AT, Mitchell K, O’Connell DW, Verhoeven J, Van Cappellen P (2016) The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environ Sci Policy 66:227–233. https://doi.org/10.1016/j.envsci.2016.07.011

    Article  Google Scholar 

  • Lõhmus K, Kull A, Truu J, Truu M, Kaar E, Ostonen I, Meel S, Kuznetsova T, Rosenvald K, Uri V, Kurvits V, Mander Ü (2007) Multifunctional Land Use. Multifunctional land use. Springer, HEIDELBERG , pp 387–401

    Chapter  Google Scholar 

  • Lozano V, Marzialetti F, Carranza ML, Chapman D, Branquart E, Dološ K, Große-Stoltenberg A, Fiori M, Capece P, Brundu G (2020) Modelling Acacia saligna invasion in a large Mediterranean island using PAB factors: a tool for implementing the European legislation on invasive species. Ecol Indic 116:106516. https://doi.org/10.1016/j.ecolind.2020.106516

    Article  Google Scholar 

  • Mácová M (2008) Dendroclimatological comparison of native Pinus sylvestris and invasive Pinus strobus in different habitats in the Czech Republic. Preslia 80:277–289

    Google Scholar 

  • Mäkinen H, Nöjd P, Kahle HP, Neumann U, Tveite B, Mielikäinen K, Röhle H, Spiecker H (2002) Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. For Ecol Manage 171:243–259. https://doi.org/10.1016/S0378-1127(01)00786-1

    Article  Google Scholar 

  • Mäkinen H, Nöjd P, Saranpää P (2003) Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiol 23:959–968. https://doi.org/10.1093/treephys/23.14.959

    Article  PubMed  Google Scholar 

  • Maloy OC (1997) White pine blister rust control in North America: a case histora. Annu Rev Phytopathol 35:87–109

    Article  CAS  Google Scholar 

  • Mandal A, Majumder A, Dhaliwal SS, Toor AS, Mani PK, Naresh RK, Gupta RK, Mitran T (2020) Impact of agricultural management practices on soil carbon sequestration and its monitoring through simulation models and remote sensing techniques: a review. Crit Rev Environ Sci Technol 1–49. https://doi.org/10.1080/10643389.2020.1811590

  • Hendrychová M (2008) Reclamation success in post-mining landscapes in the Czech Republic: a review of pedological and biological studies. J Landsc Stud 1:63–78

    Google Scholar 

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?”—a review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440. https://doi.org/10.1111/j.1526-100X.2005.00058.x

    Article  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Comm Soil Sci Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  • Mercurio R, Contu F, Scarfò F (2010) New approaches concerning forest restoration in a protected area of central Italy: An introduction. Scand J for Res 25:115–120. https://doi.org/10.1080/02827581.2010.485809

    Article  Google Scholar 

  • Metslaid S, Stanturf JA, Hordo M, Korjus H, Laarmann D, Kiviste A (2016) Growth responses of Scots pine to climatic factors on reclaimed oil shale mined land. Environ Sci Pollut Res 23:13637–13652. https://doi.org/10.1007/s11356-015-5647-4

    Article  CAS  Google Scholar 

  • Mikulenka P, Prokůpková A, Vacek Z, Vacek S, Bulušek D, Simon J, Šimůnek V, Hájek V (2020) Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill. vs. Picea abies (L.) Karst. Cent Eur for J 66:23–36. https://doi.org/10.2478/forj-2019-0026

    Article  Google Scholar 

  • Ministry of Agriculture (2019) Zpráva o stavu lesa a lesního hodpodářství České republiky v roce 2019. Ministertsvo zemědělství ČR, Praha

  • Mondek J, Baláš M (2019) Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and its role in the Czech forests. J For Sci 65:41–50. https://doi.org/10.17221/9/2019-JFS

  • Monleon VJ, Lintz HE (2015) Evidence of tree species’ range shifts in a complex landscape. PLoS ONE 10:1–17. https://doi.org/10.1371/journal.pone.0118069

    Article  CAS  Google Scholar 

  • Murray D (2011) Measuring pH in Water or CaCl2 Using a pH Meter. SFU Soil Science Lab., SFU Geography, Burnaby.

  • Naudts K, Chen Y, McGrath MJ, Ryder J, Valade A, Otto J, Luyssaert S (2016) Europe’s forest management did not mitigate climate warming. Science 351:597–599

    Article  CAS  Google Scholar 

  • Netherer S, Panassiti B, Pennerstorfer J, Matthews B (2019) Acute drought is an important driver of bark beetle infestation in Austrian Norway spruce stands. Front for Glob Chang 2:1–21. https://doi.org/10.3389/ffgc.2019.00039

    Article  Google Scholar 

  • Nicolescu VN, Rédei K, Mason WL, Vor T, Pöetzelsberger E, Bastien JC, Brus R, Benčať T, Đodan M, Cvjetkovic B, Andrašev S, La Porta N, Lavnyy V, Mandžukovski D, Petkova K, Roženbergar D, Wąsik R, Mohren GMJ, Monteverdi MC, Musch B, Klisz M, Perić S, Keça L, Bartlett D, Hernea C, Pástor M (2020) Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J for Res 31:1081–1101. https://doi.org/10.1007/s11676-020-01116-8

    Article  CAS  Google Scholar 

  • Nilsson U, Fahlvik N, Johansson U, Lundström A, Rosvall O (2011) Simulation of the effect of intensive forest management on forest production in Sweden. Forests 2:373–393. https://doi.org/10.3390/f2010373

    Article  Google Scholar 

  • Novoa A, Richardson DM, Pyšek P, Meyerson LA, Bacher S, Canavan S, Catford JA, Čuda J, Essl F, Foxcroft LC, Genovesi P, Hirsch H, Hui C, Jackson MC, Kueffer C, Le Roux JJ, Measey J, Mohanty NP, Moodley D, Müller-Schärer H, Packer JG, Pergl J, Robinson TB, Saul WC, Shackleton RT, Visser V, Weyl OLF, Yannelli FA, Wilson JRU (2020) Invasion syndromes: a systematic approach for predicting biological invasions and facilitating effective management. Biol Invasions 22:1801–1820. https://doi.org/10.1007/s10530-020-02220-w

    Article  Google Scholar 

  • Novotný P, Fulín M, Dostál J, Čáp J, Frýdl J, Liška J, Kaňák J (2017) The growth of lodgepole pine provenances in conditions of acidophilous oak forest in the Western Bohemia at the age of 34 years. Zpravy Lesn. Vyzk - Reports for Res 62:197–207

    Google Scholar 

  • Pajak M, Wasik R, Michalec K, Płoskoń M (2016) The variability of selected features of the morphological structure of scots pine introduced on a reclaimed waste dump of a former sulfur mine in piaseczno. J. Ecol. Eng. 17:83–90. https://doi.org/10.12911/22998993/63959

    Article  Google Scholar 

  • Pearson RG, Phillips SJ, Loranty MM, Beck PSA, Damoulas T, Knight SJ, Goetz SJ (2013) Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Chang 3:673–677. https://doi.org/10.1038/nclimate1858

    Article  Google Scholar 

  • Pensa M, Sellin A, Luud A, Valgma I (2004) An analysis of vegetation restoration on opencast oil shale mines in Estonia. Restor Ecol 12:200–206

    Article  Google Scholar 

  • Peterken GF (2001) Ecological effects of introduced tree species in Britain. For Ecol Manage 141:31–42. https://doi.org/10.1016/S0378-1127(00)00487-4

    Article  Google Scholar 

  • Petráš R, Košút M, Oszlányi J (1985) Listová biomasa stromov smreka, borovice a buka. Lesn Časopis for J 31:121–135

    Google Scholar 

  • Petráš R, Pajtík J (1991) Sústava česko-slovenských objemových tabuliek drevín. For J Lesn Časopis 37:49–56

    Google Scholar 

  • Pietrzykowski M (2019) Tree species selection and reaction to mine soil reconstructed at reforested post-mine sites: Central and Eastern European experiences. Ecol Eng X 3:100012. https://doi.org/10.1016/j.ecoena.2019.100012

    Article  Google Scholar 

  • Pietrzykowski M (2014) Soil quality index as a tool for Scots pine (Pinus sylvestris) monoculture conversion planning on afforested, reclaimed mine land. J for Res 25:63–74. https://doi.org/10.1007/s11676-013-0418-x

    Article  CAS  Google Scholar 

  • Pietrzykowski M, Krzaklewski W (2007) An assessment of energy efficiency in reclamation to forest. Ecol Eng 30:341–348. https://doi.org/10.1016/j.ecoleng.2007.04.003

    Article  Google Scholar 

  • Pietrzykowski M, Socha J (2011) An estimation of Scots pine (Pinus sylvestris L.) ecosystem productivity on reclaimed post-mining sites in Poland (central Europe) using of allometric equations. Ecol Eng 37:381–386. https://doi.org/10.1016/j.ecoleng.2010.10.006

    Article  Google Scholar 

  • Podrázský V (2019) Silvicultural, production and environmental potential of the main introduced tree species in Czech Republic. Lesnická práce, Kostelec nad Černými lesy.

  • Podrázský V, Čermák R, Zahradník D, Kouba J (2013) Production of douglas-fir in the Czech Republic based on national forest inventory data. J for Sci 59:398–404. https://doi.org/10.17221/48/2013-jfs

    Article  Google Scholar 

  • Podrázský V, Vacek Z, Vacek S, Vítámvás J, Gallo J, Prokůpková A, D’Andrea G (2020) Production potential and structural variability of pine stands in the Czech Republic: Scots pine (Pinus sylvestris L.) vs. introduced pines—case study and problem review. J for Sci 66:197–207. https://doi.org/10.17221/42/2020-jfs

    Article  Google Scholar 

  • Poljanšek S, Jevšenak J, Gričar J, Levanič T (2019) Seasonal radial growth of Black pine (Pinus nigra Arnold) from Bosnia and Herzegovina, monitored by the pinning method and manual band dendrometers. Acta Silvae Ligni 119:1–11. https://doi.org/10.20315/asetl.119.1

    Article  Google Scholar 

  • Pourbabaei H, Salehi A, Ebrahimi SS, Khodaparasrt F (2020) Variations of soil physicochemical properties and vegetation cover under different altitudinal gradient, Western Hyrcanean Forest, North of Iran. J for Sci 66:159–169. https://doi.org/10.17221/136/2019-JFS

    Article  CAS  Google Scholar 

  • Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62:42–55. https://doi.org/10.1111/j.1365-2389.2010.01342.x

    Article  CAS  Google Scholar 

  • Pretzsch H (2006) Wissen nutzbar machen für das Management von Waldökosystemen. Allg. Forstzeitschrift/Der Wald, pp 1158–1159.

  • Pretzsch H, Grams T, Häberle KH, Pritsch K, Bauerle T, Rötzer T (2020) Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. results of the KROOF throughfall exclusion experiment. Trees Struct Funct 34:957–970. https://doi.org/10.1007/s00468-020-01973-0

    Article  Google Scholar 

  • Putalová T, Vacek Z, Vacek S, Štefančík I, Bulušek D, Král J (2019) Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts. Cent Eur for J 65:21–33

    Google Scholar 

  • Queirós L, Deus E, Silva JS, Vicente J, Ortiz L, Fernandes PM, Castro-Díez P (2020) Assessing the drivers and the recruitment potential of Eucalyptus globulus in the Iberian Peninsula. For Ecol Manage 466:118147. https://doi.org/10.1016/j.foreco.2020.118147

    Article  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing.

  • Radu S (2013) Pinus strobus past and future in Europe. A page of silvicultural history and international scientific cooperation. Ann for Res 51:133–140. https://doi.org/10.15287/afr.2008.150

    Article  Google Scholar 

  • Rais A, Poschenrieder W, van de Kuilen JWG, Pretzsch H (2020) Impact of spacing and pruning on quantity, quality and economics of Douglas-fir sawn timber: scenario and sensitivity analysis. Eur J for Res 139:747–758. https://doi.org/10.1007/s10342-020-01282-8

    Article  Google Scholar 

  • Reineke LH (1933) Prefecting a stand-density index for even-aged forests. J Agric Res 46:627–638

    Google Scholar 

  • Remeš J, Pulkrab K, Bílek L, Podrázský V (2020) Economic and production effect of tree species change as a result of adaptation to climate change. Forests 11:431. https://doi.org/10.3390/F11040431

    Article  Google Scholar 

  • Remeš J, Šíša R (2007) Biological activity of anthropogenic soils after spoil-bank forest reclamation. J Forensic Sci 53:299–307

    Google Scholar 

  • Remeš J, Zeidler A (2014) Production potential and wood quality of Douglas fir from selected sites in the Czech Republic. Wood Res 59:509–520

    Google Scholar 

  • Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26. https://doi.org/10.1046/j.1523-1739.1998.96392.x

    Article  Google Scholar 

  • Richardson DM, Hui C, Nuñez MA, Pauchard A (2014) Tree invasions: patterns, processes, challenges and opportunities. Biol Invasions 16:473–481. https://doi.org/10.1007/s10530-013-0606-9

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809. https://doi.org/10.1111/j.1472-4642.2011.00782.x

    Article  Google Scholar 

  • Roques A, Auger-Rozenberg MA, Boivin S (2006) A lack of native congeners may limit colonization of introduced conifers by indigenous insects in Europe. Can J for Res 36:299–313. https://doi.org/10.1139/x05-277

    Article  Google Scholar 

  • Ruesink JL, Parker IM, Groom MJ, Kareiva PM (1995) Reducing the risks of nonindigenous species introductions. Guilty until Proven Innocent Bioscience 45:465–477. https://doi.org/10.2307/1312790

    Article  Google Scholar 

  • Rytter L (2006) A management regime for hybrid aspen stands combining conventional forestry techniques with early biomass harvests to exploit their rapid early growth. For Ecol Manage 236:422–426. https://doi.org/10.1016/j.foreco.2006.09.055

    Article  Google Scholar 

  • Šály R (1978) Pôda, základ lesnej produkcie. Príroda, Bratislava

  • Santala K, Aubin I, Hoepting M, Bachand M, Pitt D (2019) Managing conservation values and tree performance: Lessons learned from 10 year experiments in regenerating eastern white pine (Pinus strobus L.). For Ecol Manage 432:748–760. https://doi.org/10.1016/j.foreco.2018.09.038

    Article  Google Scholar 

  • Schlaepfer MA, Helenbrook WD, Searing KB, Shoemaker KT (2009) Assisted colonization: evaluating contrasting management actions (and values) in the face of uncertainty. Trends Ecol Evol 24:471–472. https://doi.org/10.1016/j.tree.2009.05.008

    Article  PubMed  Google Scholar 

  • Schmidt UE, Nyssen B, Muys B, Van der Lei PB, Pyttel P (2016) The history of introduced tree species in Europe in a nutshell. In: Krumm F (ed) Introduced Tree species to European forests: challenges and opportunities. European Forest Institute, Freiburg

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment: dendroecology. Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf.

  • Sedmáková D, Sedmák R, Bosela M, Ježík M, Blaženec M, Hlásny T, Marušák R (2019) Growth-climate responses indicate shifts in the competitive ability of European beech and Norway spruce under recent climate warming in East-Central Europe. Dendrochronologia 54:37–48. https://doi.org/10.1016/j.dendro.2019.02.001

    Article  Google Scholar 

  • Šefl J, Mottlovei V, Schoálkovei I (2020) Bud blight (Gemmamyces piceae) in the eastern part of the Krušné hory Mountains. J for Sci 66:309–317. https://doi.org/10.17221/11/2020-JFS

    Article  Google Scholar 

  • Seifert T, Schuck J, Block J, Pretzsch H (2006) Simulation von Biomasse- und Nährstoffgehalt von Waldbäumen. Dtsch. Verband Forstl. Forschungsanstalten. Sekt Ertragskd 29:208–223

    Google Scholar 

  • Siegel S, Castellan NJ Jr (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. Mcgraw-Hill Book Company, New York

    Google Scholar 

  • Šimůnek V, Vacek Z, Vacek S (2020) Solar cycles in salvage logging: National data from the Czech Republic confirm significant correlation. Forests 11:973. https://doi.org/10.3390/f11090973

    Article  Google Scholar 

  • Sohngen B (2009) Analysis of Forestry Carbon Sequestration as a Response to Climate Change. Copenhagen Consensus Center, Frederiksberg

    Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438

    Google Scholar 

  • Šourková M, Frouz J, Fettweis U, Bens O, Hüttl RF, Šantrůčková H (2005) Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma 129:73–80. https://doi.org/10.1016/j.geoderma.2004.12.032

    Article  CAS  Google Scholar 

  • Špulák O, Kacálek D (2020) How different approaches to logging residues handling affected retention of nutrients at poor-soil Scots pine site after clear-cutting? A case study. J for Sci 66:461–470. https://doi.org/10.17221/143/2020-jfs

    Article  CAS  Google Scholar 

  • Šrámek V, Jurkovská L, Fadrhonsová V, Hellebrandová-Neudertová K (2013) Forest soil chemistry in relation to the forest site classification categories used in the Czech Republic—results of the eu “biosoil” forest soil monitoring project. Zpravy Lesn Vyzk 58:314–323

    Google Scholar 

  • Stephens L, Fuller D, Boivin N, Rick T, Gauthier N, Kay A, Marwick B, Armstrong CG, Barton CM, Denham T, Douglass K, Driver J, Janz L, Roberts P, Rogers JD, Thakar H, Altaweel M, Johnson AL, Sampietro Vattuone MM, Aldenderfer M, Archila S, Artioli G, Bale MT, Beach T, Borrell F, Braje T, Buckland PI, Jiménez Cano NG, Capriles JM, Diez Castillo A, Çilingiroğlu Ç, Negus Cleary M, Conolly J, Coutros PR, Covey RA, Cremaschi M, Crowther A, Der L, di Lernia S, Doershuk JF, Doolittle WE, Edwards KJ, Erlandson JM, Evans D, Fairbairn A, Faulkner P, Feinman G, Fernandes R, Fitzpatrick SM, Fyfe R, Garcea E, Goldstein S, Goodman RC, Dalpoim Guedes J, Herrmann J, Hiscock P, Hommel P, Horsburgh KA, Hritz C, Ives JW, Junno A, Kahn JG, Kaufman B, Kearns C, Kidder TR, Lanoë F, Lawrence D, Lee G-A, Levin MJ, Lindskoug HB, López-Sáez JA, Macrae S, Marchant R, Marston JM, McClure S, McCoy MD, Miller AV, Morrison M, Motuzaite Matuzeviciute G, Müller J, Nayak A, Noerwidi S, Peres TM, Peterson CE, Proctor L, Randall AR, Renette S, Robbins Schug G, Ryzewski K, Saini R, Scheinsohn V, Schmidt P, Sebillaud P, Seitsonen O, Simpson IA, Sołtysiak A, Speakman RJ, Spengler RN, Steffen ML, Storozum MJ, Strickland KM, Thompson J, Thurston TL, Ulm S, Ustunkaya MC, Welker MH, West C, Williams PR, Wright DK, Wright N, Zahir M, Zerboni A, Beaudoin E, Munevar Garcia S, Powell J, Thornton A, Kaplan JO, Gaillard M-J, Klein Goldewijk K, Ellis E (2019) Archaeological assessment reveals Earth’s early transformation through land use. Science 365:897–902. https://doi.org/10.1126/science.aax1192

    Article  CAS  PubMed  Google Scholar 

  • Tomoshevich MA (2019) Interrelations between alien and native Foliar Fungal pathogens and woody plants in Siberia. Contemp Probl Ecol 12:642–657. https://doi.org/10.1134/S1995425519060143

    Article  Google Scholar 

  • Tropek R, Kadlec T, Hejda M, Kocarek P, Skuhrovec J, Malenovsky I, Vodka S, Spitzer L, Banar P, Konvicka M (2012) Technical reclamations are wasting the conservation potential of post-mining sites. A case study of black coal spoil dumps. Ecol Eng 43:13–18. https://doi.org/10.1016/j.ecoleng.2011.10.010

    Article  Google Scholar 

  • Tullus A, Rytter L, Tullus T, Weih M, Tullus H (2012) Short-rotation forestry with hybrid aspen (Populus tremula L. × P. tremuloides Michx.) in Northern Europe. Scand J for Res 27:10–29. https://doi.org/10.1080/02827581.2011.628949

    Article  Google Scholar 

  • Uprety Y, Asselin H, Bergeron Y, Mazerolle MJ (2014) White pine (Pinus strobus L.) regeneration dynamics at the species’ northern limit of continuous distribution. New for 45:131–147. https://doi.org/10.1007/s11056-013-9396-2

    Article  Google Scholar 

  • Vacek S, Moucha P, Bílek L, Mikeska M, Remeš J, Simon J, Hynek V, Šrůtka P, Schwarz O, Mánek J, Baláš M, Dort M, Podrázský V, Hejcman M, Hejcmanová P, Málková J, Stonawski J, Bednařík J, Vacek Z, Malík K, Štícha V, Bulušek D  (2012) Péče o lesní ekosystémy v chráněných územích ČR. Ministerstvo životního prostředí České republiky, Prague

    Google Scholar 

  • Vacek S, Prokůpková A, Vacek Z, Bulušek D, Šimůnek V, Králíček I, Prausová R, Hájek V (2019a) Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. J for Sci 65:331–345. https://doi.org/10.17221/82/2019-JFS

    Article  Google Scholar 

  • Vacek S, Vacek Z, Bílek L, Simon J, Remeš J, Hůnová I, Král J, Putalová T, Mikeska M (2016) Structure, regeneration and growth of scots pine (Pinus Sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fenn. 50:1–21. https://doi.org/10.14214/sf.1564

    Article  Google Scholar 

  • Vacek S, Vacek Z, Bulušek D, Putalova T, Sarginci M, Schwarz O, Šrůtka P, Podrázský V, Moser WK (2015a) European ash (Fraxinus excelsior L.) Dieback : disintegrating forest in the mountain protected areas. Czech Republic Austrian J for Sci 132:203–223

    Google Scholar 

  • Vacek S, Vacek Z, Remeš J, Bílek L, Hůnová I, Bulušek D, Putalová T, Král J, Simon J (2017a) Sensitivity of unmanaged relict pine forest in the Czech Republic to climate change and air pollution. Trees - Struct Funct 31:1599–1617. https://doi.org/10.1007/s00468-017-1572-0

    Article  CAS  Google Scholar 

  • Vacek S, Vacek Z, Ulbrichová I, Remeš J, Podrázský V, Vach M, Bulušek D, Král J, Putalová T (2019b) The effects of fertilization on the health status, nutrition and growth of Norway spruce forests with yellowing symptoms. Scand J for Res 34:267–281. https://doi.org/10.1080/02827581.2019.1589566

    Article  Google Scholar 

  • Vacek Z, Cukor J, Vacek S, Podrázský V, Linda R, Kovařík J (2018) Forest biodiversity and production potential of post-mining landscape: opting for afforestation or leaving it to spontaneous development? Cent Eur for J 64:116–126. https://doi.org/10.1515/forj-2017-0036

    Article  Google Scholar 

  • Vacek Z, Prokůpková A, Vacek S, Bulušek D, Šimůnek V, Hájek V, Králíček I (2021) Mixed vs. monospecific mountain forests in response to climate change: structural and growth perspectives of Norway spruce and European beech. For Ecol Manage 488:119019. https://doi.org/10.1016/j.foreco.2021.119019

    Article  Google Scholar 

  • Vacek Z, Vacek S, Bílek L, Remeš J, Štefančíkk I (2015b) Changes in horizontal structure of natural beech forests on an altitudinal gradient in the Sudetes. Dendrobiology 73:33–45. https://doi.org/10.12657/denbio.073.004

    Article  CAS  Google Scholar 

  • Vacek Z, Vacek S, Bulušek D, Podrázský V, Remeš J, Král J, Putalová T (2017b) Effect of fungal pathogens and climatic factors on production, biodiversity and health status of ash mountain forests. Dendrobiology 77:161–175. https://doi.org/10.12657/denbio.077.013

    Article  Google Scholar 

  • Vacek Z, Vacek S, Prokůpková A, Bulušek D, Podrázský V, Hůnová I, Putalová T, Král J (2020) Long-term effect of climate and air pollution on health status and growth of Picea abies (L.) Karst. peaty forests in the Black Triangle region. Dendrobiology 83:1–19. https://doi.org/10.12657/denbio.083.001

    Article  CAS  Google Scholar 

  • Vacek Z, Vacek S, Slanař J, Bílek L, Bulušek D, Štefančík I, Králíček I, Vančura K (2019c) Adaption of Norway spruce and European beech forests under climate change: from resistance to close-to-nature silviculture. Cent Eur for J 65:129–144. https://doi.org/10.2478/forj-2019-0013

    Article  Google Scholar 

  • Valla M, Kozák J, Němeček J, Matula S, Borůvka L, Drábek O (2008) Pedologické praktikum. ČZU, Praha, pp 63–68.

  • Venäläinen A, Lehtonen I, Laapas M, Ruosteenoja K, Tikkanen OP, Viiri H, Ikonen VP, Peltola H (2020) Climate change induces multiple risks to boreal forests and forestry in Finland: a literature review. Glob Chang Biol 26:4178–4196. https://doi.org/10.1111/gcb.15183

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitali V, Büntgen U, Bauhus J (2017) Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob Chang Biol 23:5108–5119. https://doi.org/10.1111/gcb.13774

    Article  PubMed  Google Scholar 

  • Wein K (1930) Die erste Einführung nordamerikanischer Gehölze in Europa. Mitteilungen Der Dtsch Dendrol Gesellschaft 42:137–163

    Google Scholar 

  • Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis.

  • Wingfield MJ, Slippers B, Roux J, Wingfield BD (2001) Worldwide movement of exotic forest fungi, especially in the tropics and the southern Hemisphere. Bioscience 51:134–140. https://doi.org/10.1641/0006-3568(2001)051[0134:WMOEFF]2.0.CO;2

    Article  Google Scholar 

  • Woś B, Pietrzykowski M (2019) Impact of tree species on macroelements content and properties of the initial soils in condition of reclaimed sand pit. Sylwan 163:407–414

    Google Scholar 

  • Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Can J for Res 21:414–416. https://doi.org/10.1139/x91-053

    Article  Google Scholar 

  • Yildiz O, Altundağ E, Çetin B, Güner T, Sarginci M, Toprak B (2018) Experimental arid land afforestation in Central Anatolia. Turkey Environ Monit Assess 190:1–17. https://doi.org/10.1007/s10661-018-6724-1

    Article  Google Scholar 

  • Zahradník P, Zahradníková M (2019) Salvage felling in the Czech Republic’s forests during the last twenty years. Cent Eur for J 65:12–20. https://doi.org/10.2478/forj-2019-0008

    Article  Google Scholar 

  • Zang C, Pretzsch H, Rothe A (2019) Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees Struct Funct 26:557–569. https://doi.org/10.2478/forj-2019-0008

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgement belongs to Czech Hydrometeorological Institute for providing the climatic data set. We also thank two anonymous reviewers for their constructive comments and insightful suggestions.

Funding

This study was supported by the Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences (Excellent Output 2020), Ministry of Agriculture of the Czech Republic (No. QK1910232) and GA LČR (No. 13/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Vacek.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Thomas Knoke.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacek, Z., Cukor, J., Vacek, S. et al. Production potential, biodiversity and soil properties of forest reclamations: Opportunities or risk of introduced coniferous tree species under climate change?. Eur J Forest Res 140, 1243–1266 (2021). https://doi.org/10.1007/s10342-021-01392-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-021-01392-x

Keywords

Navigation