Skip to main content
Log in

Hidden charm pentaquark states in a diquark model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The mass spectrum of hidden charm pentaquark states composed of two diquarks and an antiquark are calculated by use of an effective Hamiltonian which includes explicitly the spin, color, and flavor dependent interactions. The results show that the \(P_c(4312)^+\) and \(P_c(4440)^+\) states could be explained as hidden charm pentaquark states with isospin and spin-parity \(IJ^P=1/2\left( 3/2^-\right) \), the \(P_c(4457)^+\) state could be explained as a hidden charm pentaquark state with \(IJ^P=1/2\left( 5/2^-\right) \), and the \(P_{cs}(4459)^+\) state could be explained as a hidden charm pentaquark state with \(IJ^P=0\left( 1/2^-\right) \) or \(0\left( 3/2^-\right) \). Predications for the masses of other possible pentaquark states are also given, and the possible decay channels of these hidden charm pentaquark states are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are already contained in this published paper.]

References

  1. R. Aaij et al., LHCb Collaboration. Phys. Rev. Lett. 115, 072001 (2015)

  2. R. Aaij et al., LHCb Collaboration. Phys. Rev. Lett. 117, 082002 (2016)

  3. R. Aaij et al., LHCb Collaboration. Phys. Rev. Lett. 117, 082003 (2016)

  4. R. Aaij et al., (LHCb Collaboration). Phys. Rev. Lett. 122, 222001 (2019)

  5. R. Aaij et al., (LHCb Collaboration). arXiv:2012.10380 [hep-ex]

  6. J.J. Wu, R. Molina, E. Oset, B.S. Zou, Phys. Rev. Lett. 105, 232001 (2010)

  7. Z.H. Yang, Y.L. Ye, J. Xiao, H.B. You, H.N. Liu, Y.L. Sun, Z.H. Wang, J. Chen, Chin. Phys. C 36, 6 (2012)

    Article  ADS  Google Scholar 

  8. H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Phys. Rept 639, 1 (2016)

    Article  ADS  Google Scholar 

  9. Y. Shimizu, D. Suenaga, M. Harada, Phys. Rev. D 93, 114003 (2016)

  10. Y. Yasuhiro, E. Santopinto, Phys. Rev. D 96, 014018 (2017)

  11. M.I. Eides, V.Y. Petrov, M.V. Polyakov, Phys. Rev. D 93, 054039 (2016)

  12. K. Azizi, Y. Sarac, H. Sundu, Phys. Rev. D 95, 094016 (2017)

  13. F.K. Guo, H.J. Jing, U.G. Meißner, S. Sakai, Phys. Rev. D 99, 091501 (2019)

  14. M.Z. Liu, Y.W. Pan, F.Z. Peng, M. Sánchez, L.S. Geng, A. Hosaka, M.P. Valderrama, Phys. Rev. Lett 122, 242001 (2019)

  15. Z.H. Guo, J.A. Oller, Phys. Lett. B 793, 144–149 (2019)

    Article  ADS  Google Scholar 

  16. C. Fernández-Ramírez, A. Pilloni, M. Albaladejo, A. Jackura, V. Mathieu, M. Mikhasenko, J.A. Silva-Castro, A.P. Szczepaniak, Phys. Rev. Lett. 123, 092001 (2019)

  17. C.J. Xiao, Y. Huang, Y.B. Dong, L.S. Geng, D.Y. Chen, Phys. Rev. D 100, 014022 (2019)

  18. M.L. Du, V. Baru, F.K. Guo, C. Hanhart, U.G. Meißner, J.A. Oller, Q. Wang, Phys. Rev. Lett. 124, 072001 (2020)

  19. M. L. Du, V. Baru, F. K. Guo, C. Hanhart, U. G. Meißner, J. A. Oller, Q. Wang, arXiv:2102.07159 [hep-ph]

  20. X.K. Dong, F.K. Guo, B.S. Zou, Progr. Phys. 41, 65–93 (2021)

    Google Scholar 

  21. M. Mikhasenko, arXiv:1507.06552 [hep-ph]

  22. F.K. Guo, U.G. Meißner, W. Wang, Z. Yang, Phys. Rev. D 92, 071502 (2015)

  23. X.H. Liu, Q. Wang, Q. Zhao, Phys. Lett. B 757, 231 (2016)

    Article  ADS  Google Scholar 

  24. M. Bayar, F. Aceti, F.K. Guo, E. Oset, Phys. Rev. D 94, 074039 (2016)

  25. W. Park, A. Park, S. Cho, S.H. Lee, Phys. Rev. D 95, 054027 (2017)

  26. E. Santopinto, A. Giachino, Phys. Rev. D 96, 014014 (2017)

  27. C.R. Deng, J.L. Ping, H.X. Huang, F. Wang, Phys. Rev. D 95, 014031 (2017)

  28. R.L. Zhu, X.J. Liu, H.X. Huang, C.F. Qiao, Phys. Lett. B 797, 134869 (2019)

  29. Y.B. Dong, P.N. Shen, F. Huang, Z.Y. Zhang, Eur. Phys. J. C 80, 341 (2020)

    Article  ADS  Google Scholar 

  30. A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rept. 668, 1 (2017)

    Article  ADS  Google Scholar 

  31. R.F. Lebed, R.E. Mitchell, E.S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017)

    Article  ADS  Google Scholar 

  32. F.K. Guo, C. Hanhart, U.G. Meißner, Q. Wang, Q. Zhao, B.S. Zou, Rev. Mod. Phys. 90, 015004 (2018)

  33. Y.R. Liu, H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Prog. Part. Nucl. Phys. 107, 237 (2019)

    Article  ADS  Google Scholar 

  34. R.L. Zhu, C.F. Qiao, Phys. Lett. B 756, 259 (2016)

    Article  ADS  Google Scholar 

  35. R.F. Lebed, Phys. Rev. D 96, 116003 (2017)

  36. J.F. Giron, R.F. Lebed, C.T. Peterson, JHEP 05, 061 (2019)

    Article  ADS  Google Scholar 

  37. A. Ali, I. Ahmed, M.J. Aslam, A.Y. Parkhomenko, A. Rehman, JHEP 10, 256 (2019)

    Article  ADS  Google Scholar 

  38. L. Maiani, A.D. Polosa, V. Riquer, Phys. Lett. B 749, 289 (2015)

    Article  ADS  Google Scholar 

  39. V. V. Anisovich, M. A. Matveev, J. Nyiri, A. V. Sarantsev, A. N. Semenova, arXiv:1507.07652 [hep-ph]

  40. R.F. Lebed, Phys. Lett. B 749, 454 (2015)

    Article  ADS  Google Scholar 

  41. G.N. Li, X.G. He, M. He, JHEP 1512, 128 (2015)

    ADS  Google Scholar 

  42. Z.G. Wang, Eur. Phys. J. C 76, 70 (2016)

    Article  ADS  Google Scholar 

  43. H.X. Chen, E.L. Cui, W. Chen, X. Liu, T.G. Steele, S.L. Zhu, Eur. Phys. J. C 76, 572 (2016)

    Article  ADS  Google Scholar 

  44. A. Ali, I. Ahmed, M.J. Aslam, A. Rehman, Phys. Rev. D 94, 054001 (2016)

  45. R. Ghosh, A. Bhattacharya, B. Chakrabarti, Phys. Part. Nucl. Lett. 14, 550 (2017)

    Article  Google Scholar 

  46. A. Ali, A.Y. Parkhomenko, Phys. Lett. B 793, 365 (2019)

    Article  ADS  Google Scholar 

  47. A.N. Semenova, V.V. Anisovich, A.V. Sarantsev, Eur. Phys. J. A 56, 142 (2020)

    Article  ADS  Google Scholar 

  48. P.P. Shi, F. Huang, W.L. Wang, Eur. Phys. J. C 79, 314 (2019)

    Article  ADS  Google Scholar 

  49. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Phys. Rev. D 71, 014028 (2005)

  50. R.L. Zhu, Phys. Rev. D 94, 054009 (2016)

  51. H.C. Kim, K.S. Kim, M.K. Cheoun, D. Jido, M. Oka, Eur. Phys. J. A 52, 184 (2016)

    Article  ADS  Google Scholar 

  52. P.P. Shi, F. Huang, W.L. Wang, Phys. Rev. D 103, 094038 (2021)

  53. R. Jaffe, Phys. Rept. 409, 1 (2005)

    Article  ADS  Google Scholar 

  54. F. Huang, W.L. Wang, Phys. Rev. D 98, 074018 (2018)

  55. M. Karliner, J.L. Rosner, Phys. Rev. D 92, 074026 (2015)

  56. W.L. Wang, F. Huang, Z.Y. Zhang, B.S. Zou, Phys. Rev. C 84, 015203 (2011)

  57. P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

  58. L. Maiani, A.D. Polosa, V. Riquer, Phys. Lett. B 778, 247 (2018)

    Article  ADS  Google Scholar 

  59. N. Isgur, M.B. Wise, Phys. Rev. Lett. 66, 1130 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grants Nos. 11475181, 11635009, and 12075018, the Fundamental Research Funds for the Central Universities, and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant No. Y7292610K1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ling Wang.

Additional information

Communicated by Eulogio Oset

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, PP., Huang, F. & Wang, WL. Hidden charm pentaquark states in a diquark model. Eur. Phys. J. A 57, 237 (2021). https://doi.org/10.1140/epja/s10050-021-00542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00542-4

Navigation