Skip to main content
Log in

Effects of perturbing the particle volume fraction distribution in blast-driven multiphase instability

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The evolution of a particle cloud following its interactions with a blast wave and contact interface resulting from a detonating high-energy explosive is a difficult problem for both numerical simulations and physical experiments. In experiments, it is challenging to accurately characterize both the initial states of the explosive and the surrounding particle bed. There are also limitations in the available diagnostic tools and measurable data which can be extracted from the experiments. Thus, simulations are a cheaper alternative where the physics governing the interactions between the expanding particle cloud and the highly compressible, post-detonation fluid flow can be analyzed. Using multiphase, compressible flow simulations in an Eulerian–Lagrangian frame, the impact of introducing perturbations to a particle bed surrounding an explosive charge is studied. The analysis focuses on the multiphase instabilities and late-time behavior displayed by the particle cloud and discusses the associated underlying physical phenomena. The effects of these instabilities on the behavior of the mixing between the detonation products and the surrounding air are also discussed. The perturbations are varied to reveal the effects of the initial particle distribution and its persistence in the later-time particle cloud and the background fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bdzil, J.B., Stewart, D.S.: The dynamics of detonation in explosive systems. Annu. Rev. Fluid Mech. 39, 263–292 (2007). https://doi.org/10.1146/annurev.fluid.38.050304.092049

    Article  MathSciNet  MATH  Google Scholar 

  2. Zeldovich, Y.B.: To the theory of detonation propagation in gas systems. J. Exp. Theor. Phys. 10(5), 542–568 (1940)

    Google Scholar 

  3. Zhang, F., Frost, D., Thibault, P., Murray, S.: Explosive dispersal of solid particles. Shock Waves 10(6), 431–443 (2001). https://doi.org/10.1007/PL00004050

    Article  MATH  Google Scholar 

  4. Frost, D.L., Gregoire, Y., Petel, O., Goroshin, S., Zhang, F.: Particle jet formation during explosive dispersal of solid particles. Phys. Fluids 24(9), 091109 (2012). https://doi.org/10.1063/1.4751876

    Article  Google Scholar 

  5. Ripley, R., Donahue, L., Zhang, F.: Jetting instabilities of particles from explosive dispersal. AIP Conf. Proc. 1426, 1615–1618 (2012). https://doi.org/10.1063/1.3686594

  6. Frost, D.L., Loiseau, J., Marr, B.J., Goroshin, S.: Particle segregation during explosive dispersal of binary particle mixtures. AIP Conf. Proc. 1793, 120020 (2017) https://doi.org/10.1063/1.4971702

  7. Hughes, K., Balachandar, S., Diggs, A., Haftka, R., Kim, N., Littrell, D.: Simulation-driven design of experiments examining the large-scale, explosive dispersal of particles. Shock Waves 30(4), 325–347 (2020). https://doi.org/10.1007/s00193-019-00927-x

    Article  Google Scholar 

  8. Milne, A., Parrish, C., Worland, I.: Dynamic fragmentation of blast mitigants. Shock Waves 20(1), 41–51 (2010). https://doi.org/10.1007/s00193-009-0235-5

    Article  Google Scholar 

  9. Milne, A., Floyd, E., Longbottom, A., Taylor, P.: Dynamic fragmentation of powders in spherical geometry. Shock Waves 24(5), 501–513 (2014). https://doi.org/10.1007/s00193-014-0511-x

    Article  Google Scholar 

  10. Milne, A., Longbottom, A., Frost, D., Loiseau, J., Goroshin, S., Petel, O.: Explosive fragmentation of liquids in spherical geometry. Shock Waves 27(3), 383–393 (2017). https://doi.org/10.1007/s00193-016-0671-y

    Article  Google Scholar 

  11. Frost, D.: Heterogeneous/particle-laden blast waves. Shock Waves 28(3), 439–449 (2018). https://doi.org/10.1007/s00193-018-0825-1

    Article  Google Scholar 

  12. McFarland, J.A., Black, W.J., Dahal, J., Morgan, B.E.: Computational study of the shock driven instability of a multiphase particle-gas system. Phys. Fluids 28(2), 024105 (2016). https://doi.org/10.1063/1.4941131

    Article  Google Scholar 

  13. Rodriguez, V., Saurel, R., Jourdan, G., Houas, L.: Solid-particle jet formation under shock-wave acceleration. Phys. Rev. E 88(6), 063011 (2013). https://doi.org/10.1103/PhysRevE.88.063011

    Article  Google Scholar 

  14. Black, W., Denissen, N., McFarland, J.: Particle force model effects in a shock-driven multiphase instability. Shock Waves 28(3), 463–472 (2018). https://doi.org/10.1007/s00193-017-0790-0

    Article  Google Scholar 

  15. Osnes, A.N., Vartdal, M., Reif, B.P.: Numerical simulation of particle jet formation induced by shock wave acceleration in a Hele–Shaw cell. Shock Waves 28(3), 451–461 (2018). https://doi.org/10.1007/s00193-017-0778-9

    Article  Google Scholar 

  16. Vorobieff, P., Anderson, M., Conroy, J., White, R., Truman, C.R., Kumar, S.: Vortex formation in a shock-accelerated gas induced by particle seeding. Phys. Rev. Lett. 106(18), 184503 (2011). https://doi.org/10.1103/PhysRevLett.106.184503

    Article  Google Scholar 

  17. Anderson, M., Vorobieff, P., Truman, C., Corbin, C., Kuehner, G., Wayne, P., Conroy, J., White, R., Kumar, S.: An experimental and numerical study of shock interaction with a gas column seeded with droplets. Shock Waves 25(2), 107–125 (2015). https://doi.org/10.1007/s00193-015-0555-6

    Article  Google Scholar 

  18. Rayleigh, L.: On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. 1(1), 57–72 (1879). https://doi.org/10.1112/plms/s1-11.1.57

    Article  MathSciNet  MATH  Google Scholar 

  19. Taylor, G.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 201(1065), 192–196 (1950). https://doi.org/10.1098/rspa.1950.0052

    Article  MathSciNet  MATH  Google Scholar 

  20. Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13(2), 297–319 (1960). https://doi.org/10.1002/cpa.3160130207

    Article  MathSciNet  Google Scholar 

  21. Meshkov, E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4(5), 101–104 (1969)

    Article  Google Scholar 

  22. Middlebrooks, J.B., Avgoustopoulos, C.G., Black, W.J., Allen, R.C., McFarland, J.A.: Droplet and multiphase effects in a shock-driven hydrodynamic instability with reshock. Exp. Fluids 59(6), 98 (2018). https://doi.org/10.1007/s00348-018-2547-7

    Article  Google Scholar 

  23. Black, W.J., Denissen, N.A., McFarland, J.A.: Evaporation effects in shock-driven multiphase instabilities. J. Fluids Eng. 139(7), 071204 (2017). https://doi.org/10.1115/1.4036162

    Article  Google Scholar 

  24. McFarland, J.A., Hagenmaier, M.: Computational study of shock-driven multiphase mixing in scramjet conditions. AIAA J. 56(10), 4004–4015 (2018). https://doi.org/10.2514/1.J056548

    Article  Google Scholar 

  25. Balakrishnan, K.: Explosion-driven Rayleigh–Taylor instability in gas–particle mixtures. Phys. Fluids 26(4), 043303 (2014). https://doi.org/10.1063/1.4873175

    Article  Google Scholar 

  26. Annamalai, S., Rollin, B., Ouellet, F., Neal, C., Jackson, T.L., Balachandar, S.: Effects of initial perturbations in the early moments of an explosive dispersal of particles. J. Fluids Eng. 138(7), 070903 (2016). https://doi.org/10.1115/1.4030954

    Article  Google Scholar 

  27. Ouellet, F., Annamalai, S., Rollin, B.: Effect of a bimodal initial particle volume fraction perturbation in an explosive dispersal of particles. AIP Conf. Proc. 1793, 150011 (2017) https://doi.org/10.1063/1.4971740

  28. Fernández-Godino, M.G., Ouellet, F., Haftka, R.T., Balachandar, S.: Early time evolution of circumferential perturbation of initial particle volume fraction in explosive cylindrical multiphase dispersion. J. Fluids Eng. 141(9), 091302 (2019). https://doi.org/10.1115/1.4043055

    Article  Google Scholar 

  29. Liou, M.-S.: A sequel to AUSM, Part II: AUSM+-up for all speeds. J. Comput. Phys. 214(1), 137–170 (2006). https://doi.org/10.1016/j.jcp.2005.09.020

    Article  MathSciNet  MATH  Google Scholar 

  30. Haselbacher, A.: A WENO reconstruction algorithm for unstructured grids based on explicit stencil construction. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 2005-0879 (2005) https://doi.org/10.2514/6.2005-879

  31. Ling, Y., Haselbacher, A., Balachandar, S.: Transient phenomena in one-dimensional compressible gas-particle flows. Shock Waves 19(1), 67–81 (2009). https://doi.org/10.1007/s00193-009-0190-1

    Article  MATH  Google Scholar 

  32. Ling, Y., Haselbacher, A., Balachandar, S.: Importance of unsteady contributions to force and heating for particles in compressible flows: Part 1: Modeling and analysis for shock–particle interaction. Int. J. Multiph. Flow 37(9), 1026–1044 (2011). https://doi.org/10.1016/j.ijmultiphaseflow.2011.07.001

    Article  Google Scholar 

  33. Ling, Y., Haselbacher, A., Balachandar, S.: Importance of unsteady contributions to force and heating for particles in compressible flows. Part 2: application to particle dispersal by blast waves. Int. J. Multiph. Flow 37(9), 1013–1025 (2011). https://doi.org/10.1016/j.ijmultiphaseflow.2011.07.002

    Article  Google Scholar 

  34. Garno, J., Ouellet, F., Bae, S., Jackson, T.L., Kim, N.-H., Haftka, R., Hughes, K.T., Balachandar, S.: Calibration of reactive burn and Jones–Wilkins–Lee parameters for simulations of a detonation-driven flow experiment with uncertainty quantification. Phys. Rev. Fluids 5(12), 123201 (2020). https://doi.org/10.1103/PhysRevFluids.5.123201

    Article  Google Scholar 

  35. Parmar, M., Haselbacher, A., Balachandar, S.: Improved drag correlation for spheres and application to shock-tube experiments. AIAA J. 48(6), 1273–1276 (2010). https://doi.org/10.2514/1.J050161

    Article  Google Scholar 

  36. Parmar, M., Haselbacher, A., Balachandar, S.: On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 366(1873), 2161–2175 (2008). https://doi.org/10.1098/rsta.2008.0027

    Article  MATH  Google Scholar 

  37. Parmar, M., Haselbacher, A., Balachandar, S.: Generalized Basset–Boussinesq–Oseen equation for unsteady forces on a sphere in a compressible flow. Phys. Rev. Lett. 106(8), 084501 (2011). https://doi.org/10.1103/PhysRevLett.106.084501

    Article  Google Scholar 

  38. Annamalai, S., Balachandar, S.: Faxén form of time-domain force on a sphere in unsteady spatially varying viscous compressible flows. J. Fluid Mech. 816, 381–411 (2017). https://doi.org/10.1017/jfm.2017.77

    Article  MathSciNet  MATH  Google Scholar 

  39. Clift, R., Gauvin, W.: The motion of particles in turbulent gas streams. Proc. Chemeca 1, 14–28 (1970)

    Google Scholar 

  40. Sangani, A.S., Zhang, D., Prosperetti, A.: The added mass, basset, and viscous drag coefficients in nondilute bubbly liquids undergoing small-amplitude oscillatory motion. Phys. Fluids A Fluid Dyn. 3(12), 2955–2970 (1991). https://doi.org/10.1063/1.857838

    Article  MathSciNet  MATH  Google Scholar 

  41. Ling, Y., Wagner, J., Beresh, S., Kearney, S., Balachandar, S.: Interaction of a planar shock wave with a dense particle curtain: modeling and experiments. Phys. Fluids 24(11), 113301 (2012). https://doi.org/10.1063/1.4768815

    Article  Google Scholar 

  42. Patankar, N., Joseph, D.: Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach. Int. J. Multiph. Flow 27(10), 1659–1684 (2001). https://doi.org/10.1016/S0301-9322(01)00021-0

    Article  MATH  Google Scholar 

  43. Harris, S., Crighton, D.: Solitons, solitary waves, and voidage disturbances in gas-fluidized beds. J. Fluid Mech. 266, 243–276 (1994). https://doi.org/10.1017/S0022112094000996

    Article  MathSciNet  MATH  Google Scholar 

  44. Jones, H., Miller, A.: The detonation of solid explosives: the equilibrium conditions in the detonation wave-front and the adiabatic expansion of the products of detonation. Proc. R. Soc. A: Math. Phys. Eng. Sci. 194(1039), 480–507 (1948). https://doi.org/10.1098/rspa.1948.0093

  45. Wilkins, M.: The equation of state of PBX 9404 and LXO4-01. Lawrence Radiation Laboratory, Livermore, Rept. UCRL-7797 (1964)

  46. Lee, E., Hornig, H., Kury, J.: Adiabatic expansion of high explosive detonation products. Lawrence Radiation Lab, California University, Livermore, UCRL-50422 (1968). https://doi.org/10.2172/4783904

  47. Dobrat, B., Crawford, P.: Handbook, LLNL explosives. Lawrence Livermore National Laboratory (1985)

  48. Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68(1), 1–24 (1987). https://doi.org/10.1016/0021-9991(87)90041-6

    Article  MathSciNet  MATH  Google Scholar 

  49. Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992). https://doi.org/10.1016/0021-9991(92)90046-2

  50. Rodriguez, V., Saurel, R., Jourdan, G., Houas, L.: Impulsive dispersion of a granular layer by a weak blast wave. Shock Waves 27(2), 187–198 (2017). https://doi.org/10.1007/s00193-016-0658-8

  51. Wagner, J.L., Beresh, S.J., Kearney, S.P., Trott, W.M., Castaneda, J.N., Pruett, B.O., Baer, M.R.: A multiphase shock tube for shock wave interactions with dense particle fields. Exp. Fluids 52(6), 1507–1517 (2012). https://doi.org/10.1007/s00348-012-1272-x

    Article  Google Scholar 

  52. Vorobieff, P., Rightley, P.M., Benjamin, R.F.: Shock-driven gas curtain: fractal dimension evolution in transition to turbulence. Phys. D: Nonlinear Phenom. 133(1–4), 469–476 (1999). https://doi.org/10.1016/S0167-2789(99)00079-2

    Article  MATH  Google Scholar 

  53. Ng, H.D., Abderrahmane, H.A., Bates, K.R., Nikiforakis, N.: The growth of fractal dimension of an interface evolution from the interaction of a shock wave with a rectangular block of SF6. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4158–4162 (2011). https://doi.org/10.1016/j.cnsns.2011.03.016

  54. Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723, 1–160 (2017). https://doi.org/10.1016/j.physrep.2017.07.008

  55. Mikaelian, K.O.: Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids 17(9), 094105 (2005). https://doi.org/10.1063/1.2046712

    Article  MathSciNet  MATH  Google Scholar 

  56. Wei, T., Livescu, D.: Effects of initial conditions on single and two-mode Rayleigh–Taylor instabilities. Presented at Turbulent Mixing and Beyond Third International Conference, Trieste, Italy (2011)

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ouellet.

Additional information

Communicated by R. Bonazza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouellet, F., Rollin, B., Koneru, R.B. et al. Effects of perturbing the particle volume fraction distribution in blast-driven multiphase instability. Shock Waves 31, 337–360 (2021). https://doi.org/10.1007/s00193-021-01023-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01023-9

Keywords

Navigation