Skip to main content
Log in

Ionic conductivities and dielectric analysis of (C6H20N3)BiI6·H2O compound

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Thermogravimetric analysis, differential scanning calorimetry analysis and complex impedance spectroscopic data have been carried out on (C6H20N3)BiI6.H2O compound. The results show that this compound exhibits a phase transition at 325 K which was characterized by differential scanning calorimetry spectroscopy and dielectric measurements. The dielectric analysis has been studied by using impedance spectroscopy measurements over a wide range of temperatures and frequencies, 290–350 K and 100 Hz–1 MHz, respectively. The Z′ and Z″ vs. frequency plots are well-fitted to an equivalent electrical circuit consisting of a parallel combination of a bulk resistance Rp (polarization resistance) and constant phase elements CPE (capacity of the fractal interface). The frequency-dependent AC conductivity is well analyzed by Jonscher’s universal power law: σ(ω,T) = σdc(T) + A(T)ωs(T). This suggested hoping conduction due to three theoretical models. The latter can be attributed to the quantum mechanical tunneling model in region I and correlated barrier hopping in region II. The temperature dependence and dielectric relaxation of the DC conductivity satisfied the Arrhenius law. Furthermore, the modulus plots have been characterized by full width at half height or in terms of a non-experiential decay function φ(t) = exp(− t/τ)β. The values of the activation energies obtained from the electrical conductivity and electric modulus are near, which suggests that the transport is probably due to the ion hopping mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D B Mitzi, K Chondroudis and C R Kagan Inorg. Chem. 38 6246 (1999)

  2. C D Dimitrakopolous and P Malenfant AdV. Mater. 14 99 (2002)

  3. H E Katz, Z Bao and S Gilat Acc. Chem. Res. 34 359 (2001)

  4. F Garnier Acc. Chem. Res. 32 209 (1999)

  5. G Horowitz AdV. Mater. 10 365 (1998)

  6. A Kraft, A C Grimsdale and A B Holmes Angew. Chem. Int. Ed. 37 402 (1998)

  7. U Mitschke and P J Bauerle Mater. Chem. 10 1471 (2000)

  8. J Zyss (Ed). Molecular Nonlinear Optics: Materials, Physics and Devices (New York : Academic Press)

  9. R Jakubas and L Sobczyk Phase Trans. 20 163(1990)

  10. H Ishihara et al Z. Natufforsch. 47a 65(1992)

  11. H Chouaib, S Karoui and S Kamoun J Mater Sci: Mater Electron. 06–07(2017)

  12. H Chouaib and S Kamoun J. Phys. Chem.Solids. 85 218 (2015)

  13. H Chouaib, S Kamoun, L.C. Costa and M.P.F. Graça J. Mol. Struct. 1102 80(2015)

  14. N Elfaleh and S Kamoun J. Org. Chem. 819 95 (2016)

  15. N Elfaleh and S Kamoun Ionics. 212685 (2015)

  16. N Elfaleh, H Chouaib, S Kamoun and M P F Graça J. Phys. Org. Chem. 28 674 (2015)

  17. K Saidi, S Kamoun, H F Ayedi and M Arous J. Phys. Chem. Solids. 74 1560 (2013)

  18. C E Lee, N S Dalal and R Fu Curr. Appl. Phys. 3 405 (2003)

  19. I Chaabane, F Hlel and K Guidara J. Alloys. Compd. 461 495 (2008)

  20. S Karoui, S Kamoun and A Jouini J. Solid State Chem. 197 60 (2013)

  21. R H Chen, R Y Chang and S C Shern J. Phys. Chem. Solids. 63 2069 (2002)

  22. S R Elliott Philosophical Magazine. 36 1291 (1977)

  23. A R Long Advanced in Physics. 31 553 (1982)

  24. I G Austin and N F Mott Advances in Physics. 19 41(1969)

  25. S R Elliot Philos. Magn. 36 12 (1977)

  26. H E Ahmed and S Kamoun Synthetic Metals. 221 299 (2016)

  27. A Oueslati, F Hlel, K Guidara and M Gargouri J. Alloys. Compd. 492 508 (2010)

  28. H Chouaib, N Elfaleh, S Karoui, S Kamoun and M P F Graça Synt. Met. 217 129 (2016)

  29. N G McCrum, B E Read and G Williams (New York : Wiley) p 617 (1967)

  30. A Kyritsis, P Pissi and I Grammatikakis J. Polym. Sci. Part B: Polym. Phys. 33 1737 (1995)

  31. P B Macedo, C T Mognihan and R Bose Phys. Chem. Glasses. 13 171 (1972)

  32. M D Migahed, N A Bakr, M I Abdel-Hamid, O EL-Hannafy and M El-Nimr J. Appl. Polym. Sci. 59 655 (1996)

  33. S Lanfredi, P S Saia, R Lebullenger and A C Hernandes Solid State Ionics. 146 329 (2002)

  34. B Louati, K Guidara and M Gargouri J. Alloys. Compd. 472 347 (2009)

  35. M Sural and A Gosh Solid State Ionics. 130 259 (2000)

  36. K P Padmasree, D K Kanchan and A R Kulkarni Solid State Ionic. 177 475 (2006)

  37. S Havriliak and S Negami Polym. 8 161 (1967)

  38. K L Ngai, A K. Rizos and D J Plazek J. Non-Cryst. Solids. 235 435 (1998)

  39. A K Jonscher Mater J. Sci. 13 553 (1978)

  40. R M. Hill and A K. Jonscher J. Non-Cryst. Solids. 32 53 (1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahel Karoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elfaleh, N., Karoui, S. & Kamoun, S. Ionic conductivities and dielectric analysis of (C6H20N3)BiI6·H2O compound. Indian J Phys 96, 2337–2344 (2022). https://doi.org/10.1007/s12648-021-02173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02173-3

Keywords

Navigation