Skip to main content
Log in

Enhanced photogalvanic effect in the two-dimensional MgCl2/ZnBr2 vertical heterojunction by inhomogenous tensile stress

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The photogalvanic effect (PGE) occurring in noncentrosymmetric materials enables the generation of a dc photocurrent at zero bias with a high polarization sensitivity, which makes it very attractive in photodetection. However, the magnitude of the PGE photocurrent is usually small, leading to a low photoresponsivity, and therefore hampers its practical application in photodetection. Here, we propose an approach to largely enhancing the PGE photocurrent by applying an inhomogenous mechanical stretch, based on quantum transport simulations. We model a two-dimensional photodetector consisting of the wide-bandgap MgCl2/ZnBr2 vertical van der Waals heterojunction with the noncentrosymmetric C3v symmetry. Polarization-sensitive PGE photocurrent is generated under the vertical illumination of linearly polarized light. By applying inhomogenous mechanical stretch on the lattice, the photocurrent can be largely increased by up to 3 orders of magnitude due to the significantly increased device asymmetry. Our results propose an effective way to enhance the PGE by inhomogenous mechanical strain, showing the potential of the MgCl2/ZnBr2 vertical heterojunction in the low-power UV photodetection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Chen, H. Liu, Z. Zhang, K. Hu, and X. Fang, Nanostructured photodetectors: From ultraviolet to terahertz, Adv. Mater. 28(3), 403 (2016)

    Article  ADS  Google Scholar 

  2. Q. Zhang, X. Li, Z. He, M. Xu, C. Jin, and X. Zhou, 2D semiconductors towards high-performance ultraviolet photodetection, J. Phys. D 52(30), 303002 (2019)

    Article  Google Scholar 

  3. D. Guo, Y. Su, H. Shi, P. Li, N. Zhao, J. Ye, S. Wang, A. Liu, Z. Chen, C. Li, and W. Tang, Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn:Ga2O3 pn Junction, ACS Nano 12(12), 12827 (2018)

    Article  Google Scholar 

  4. W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, and F. Huang, Vacuum ultraviolet photodetection in two-dimensional oxides, ACS Appl. Mater. Interfaces 10(24), 20696 (2018)

    Article  Google Scholar 

  5. W. Zheng, R. Lin, Z. Zhang, and F. Huang, Vacuum-ultraviolet photodetection in few-layered h-BN, ACS Appl. Mater. Interfaces 10(32), 27116 (2018)

    Article  Google Scholar 

  6. Y. Gao, S. Lei, T. Kang, L. Fei, C. L. Mak, J. Yuan, M. Zhang, S. Li, Q. Bao, Z. Zeng, Z. Wang, H. Gu, and K. Zhang, Bias-switchable negative and positive photoconductivity in 2D FePS3 ultraviolet photodetectors, Nanotechnology 29(24), 244001 (2018)

    Article  ADS  Google Scholar 

  7. H. Kan, W. Zheng, R. C. Lin, M. Li, C. Fu, H. B. Sun, M. Dong, C. H. Xu, J. T. Luo, Y. Q. Fu, and F. Huang, Ultrafast photovoltaic-type deep ultraviolet photodetectors using hybrid zero-/two-dimensional heterojunctions, ACS Appl. Mater. Interfaces 11(8), 8412 (2019)

    Article  Google Scholar 

  8. Y. Gao, Y. Zhang, and D. Xiao, Tunable layer circular photogalvanic effect in twisted bilayers, Phys. Rev. Lett. 124(7), 077401 (2020)

    Article  ADS  Google Scholar 

  9. R. von Baltz and W. Kraut, Theory of the bulk photovoltaic effect in pure crystals, Phys. Rev. B 23(10), 5590 (1981)

    Article  ADS  Google Scholar 

  10. V. I. Belinicher, Space-oscillating photocurrent in crystals without symmetry center, Phys. Lett. A 66(3), 213 (1978)

    Article  ADS  Google Scholar 

  11. S. D. Ganichev and W. Prettl, Spin photocurrents in quantum wells, J. Phys.: Condens. Matter 15(20), R935 (2003)

    ADS  Google Scholar 

  12. X. Tao, P. Jiang, H. Hao, X. Zheng, L. Zhang, and Z. Zeng, Pure spin current generation via photogalvanic effect with spatial inversion symmetry, Phys. Rev. B 102(8), 081402 (2020)

    Article  ADS  Google Scholar 

  13. M. M. Ramin Moayed, F. Li, P. Beck, J. C. Schober, and C. Klinke, Anisotropic circular photogalvanic effect in colloidal tin sulfide nanosheets, Nanoscale 12(11), 6256 (2020)

    Article  Google Scholar 

  14. M. Chen, K. Lee, J. Li, L. Cheng, Q. Wang, K. Cai, E. E. M. Chia, H. Chang, and H. Yang, Anisotropic picosecond spin-photocurrent from Weyl semimetal WTe2, ACS Nano 14(3), 3539 (2020)

    Article  Google Scholar 

  15. C. Guo, Y. Hu, G. Chen, D. Wei, L. Zhang, Z. Chen, W. Guo, H. Xu, C. N. Kuo, C. S. Lue, X. Bo, X. Wan, L. Wang, A. Politano, X. Chen, and W. Lu, Anisotropic ultrasensitive PdTe2 -based phototransistor for room-temperature long-wavelength detection, Sci. Adv. 6(36), eabb6500 (2020)

    Article  ADS  Google Scholar 

  16. Y. Luo, Y. Hu, and Y. Xie, Highly polarization-sensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: A theoretical prediction, J. Mater. Chem. A 7(48), 27503 (2019)

    Article  Google Scholar 

  17. Y. Peng, X. T. Liu, Z. H. Sun, C. M. Ji, L. N. Li, Z. Y. Wu, S. S. Wang, Y. P. Yao, M. C. Hong, and J. H. Luo, Exploiting the bulk photovoltaic effect in a 2D trilayered hybrid ferroelectric for highly sensitive polarized light detection, Angew. Chem. Int. Ed. 59(10), 3933 (2020)

    Article  Google Scholar 

  18. Y. J. Zhang, T. Ideue, M. Onga, F. Qin, R. Suzuki, A. Zak, R. Tenne, J. H. Smet, and Y. Iwasa, Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes, Nature 570(7761), 349 (2019)

    Article  ADS  Google Scholar 

  19. J. E. Spanier, V. M. Fridkin, A. M. Rappe, A. R. Akbashev, A. Polemi, Y. Qi, Z. Gu, S. M. Young, C. J. Hawley, D. Imbrenda, G. Xiao, A. L. Bennett-Jackson, and C. L. Johnson, Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator, Nat. Photonics 10(9), 611 (2016)

    Article  ADS  Google Scholar 

  20. J. Li and P. M. Haney, Circular photogalvanic effect in organometal halide perovskite CH3NH3PbI3, Appl. Phys. Lett. 109(19), 193903 (2016)

    Article  ADS  Google Scholar 

  21. M. M. Yang, D. J. Kim, and M. Alexe, Flexo-photovoltaic effect, Science 360(6391), 904 (2018)

    Article  ADS  Google Scholar 

  22. H. Zou, C. Zhang, H. Xue, Z. Wu, and Z. L. Wang, Boosting the solar cell efficiency by flexo-photovoltaic effect? ACS Nano 13(11), 12259 (2019)

    Article  Google Scholar 

  23. S. Nadupalli, J. Kreisel, and T. Granzow, Increasing bulk photovoltaic current by strain tuning, Sci. Adv. 5(3), eaau9199 (2019)

    Article  ADS  Google Scholar 

  24. J. Zhao, Y. Hu, Y. Xie, L. Zhang, and Y. Wang, Largely enhanced photogalvanic effects in a phosphorene photodetector by strain-increased device asymmetry, Phys. Rev. Appl. 14(6), 064003 (2020)

    Article  ADS  Google Scholar 

  25. N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari, Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds, Nat. Nanotechnol. 13(3), 246 (2018)

    Article  ADS  Google Scholar 

  26. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  27. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  29. J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)

    Article  ADS  Google Scholar 

  30. L. E. Henrickson, Nonequilibrium photocurrent modeling in resonant tunneling photodetectors, J. Appl. Phys. 91(10), 6273 (2002)

    Article  ADS  Google Scholar 

  31. Y. Xie, M. Chen, Z. Wu, Y. Hu, Y. Wang, J. Wang, and H. Guo, Two-dimensional photogalvanic spin-battery, Phys. Rev. Appl. 10(3), 034005 (2018)

    ADS  Google Scholar 

  32. Y. Xie, L. Zhang, Y. Zhu, L. Liu, and H. Guo, Photogalvanic effect in monolayer black phosphorus, Nanotechnology 26(45), 455202 (2015)

    Article  ADS  Google Scholar 

  33. J. Chen, L. Zhang, L. Zhang, X. Zheng, L. Xiao, S. Jia, and J. Wang, Photogalvanic effect induced fully spin polarized current and pure spin current in zigzag SiC nanoribbons, Phys. Chem. Chem. Phys. 20, 26744 (2018)

    Article  Google Scholar 

  34. L. Zhang, K. Gong, J. Chen, L. Liu, Y. Zhu, D. Xiao, and H. Guo, Generation and transport of valley polarized current in transition metal dichalcogenides, Phys. Rev. B 90, 195428 (2014)

    Article  ADS  Google Scholar 

  35. V. I. Belinicher and B. I. Sturman, The photogalvanic effect in media lacking a center of symmetry, Sov. Phys. Usp. 23(3), 199 (1980)

    Article  ADS  Google Scholar 

  36. S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, and L. E. Vorobjev, Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells, Appl. Phys. Lett. 77(20), 3146 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 51871156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqun Xie.

Additional information

arXiv: 2106.13526. This article can also be found at http://journal.hep.com.cn/fop/EN/https://doi.org/10.1007/s11467-021-1093-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Zhao, J. & Xie, Y. Enhanced photogalvanic effect in the two-dimensional MgCl2/ZnBr2 vertical heterojunction by inhomogenous tensile stress. Front. Phys. 17, 13502 (2022). https://doi.org/10.1007/s11467-021-1093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1093-6

Keywords

Navigation