Skip to main content
Log in

Narrow-bandgap materials for optoelectronics applications

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Narrow-bandgap materials possess the intriguing optical-electric properties and unique structures, which can be widely applied in the field of photonics, energy optoelectronic sensing and biomedicine, etc. Nowadays, the researches on nonlinear optical properties of narrow-bandgap materials have attracted extensive attention worldwide. In this paper, we review the progress of narrow-bandgap materials from many aspects, such as background, nonlinear optical properties, energy band structure, methods of preparation, and applications. These materials have obvious nonlinear optical characteristics and the interaction with the short pulse laser excitation shows the extremely strong nonlinear absorption characteristics, which leads to the optical limiting or saturable absorption related to Pauli blocking and excited state absorption. Especially, some of these novel narrow-bandgap materials have been utilized for the generation of ultrashort pulse that covers the range from the visible to mid-infrared wavelength regions. Hence, the study on these materials paves a new way for the advancement of optoelctronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  2. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)

    Article  ADS  Google Scholar 

  3. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, Graphene thickness determination using reflection and contrast spectroscopy, Nano Lett. 7(9), 2758 (2007)

    Article  ADS  Google Scholar 

  4. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nat. Nanotechnol. 3(8), 491 (2008)

    Article  ADS  Google Scholar 

  5. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457(7230), 706 (2009)

    Article  ADS  Google Scholar 

  6. A. Pospischil and T. Mueller, Optoelectronic devices based on atomically thin transition metal dichalcogenides, Appl. Sci. (Basel) 6(3), 78 (2016)

    Article  Google Scholar 

  7. P. F. Chen, N. Li, X. Z. Chen, W.-J. Ong, and X. J. Zhao, The rising star of two-dimensional black phosphorus beyond graphene: Synthesis, properties and electronic applications, 2D Materials 5, 014002 (2017)

    Article  Google Scholar 

  8. A. Zhuang, J. J. Li, Y. C. Wang, X. Wen, Y. Lin, B. Xiang, X. P. Wang, and J. Zeng, Screw-dislocation-driven bidirectional spiral growth of Bi2Se3 nanoplates, Angew. Chem. Int. Ed. 53(25), 6425 (2014)

    Article  Google Scholar 

  9. T. Chai, X. Li, T. Feng, P. Guo, Y. Song, Y. Chen, and H. Zhang, Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field, Nanoscale 10(37), 17617 (2018)

    Article  Google Scholar 

  10. C. Wang, L. Wang, X. Li, W. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser, Nanotechnology 30(2), 025204 (2019)

    Article  ADS  Google Scholar 

  11. M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, S. K. Turitsyn, Carbon nanotubes for ultrafast fiber lasers, Nanophotonics 6(1), 1 (2016)

    Article  Google Scholar 

  12. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater. 19(19), 3077 (2009)

    Article  Google Scholar 

  13. I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene, Appl. Phys. Lett. 102(19), 191109 (2013)

    Article  ADS  Google Scholar 

  14. S. Davide Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber, Opt. Lett. 38(10), 1745 (2013)

    Article  ADS  Google Scholar 

  15. E. Ugolotti, A. Schmidt, V. Petrov, J. Wan Kim, D. I. Yeom, F. Rotermund, S. Bae, B. Hee Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, Graphene mode-locked femtosecond Yb:KLuW laser, Appl. Phys. Lett. 101(16), 161112 (2012)

    Article  ADS  Google Scholar 

  16. K. F. Mak, J. Shan, and T. F. Heinz, Seeing many-body effects in single- and few-layer graphene: Observation of two-dimensional saddle-point excitons, Phys. Rev. Lett. 106(4), 046401 (2011)

    Article  ADS  Google Scholar 

  17. G. Demetriou, H. T. Bookey, F. Biancalana, E. Abraham, Y. Wang, W. Ji, and A. K. Kar, Nonlinear optical properties of multilayer graphene in the infrared, Opt. Express 24(12), 13033 (2016)

    Article  ADS  Google Scholar 

  18. T. Winzer, R. Ciesielski, M. Handloser, A. Comin, A. Hartschuh, and E. Malic, Microscopic view on the ultrafast photoluminescence from photoexcited graphene, Nano Lett. 15(2), 1141 (2015)

    Article  ADS  Google Scholar 

  19. K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, Photoexcitation cascade and multiple hot-carrier generation in grapheme, Nat. Phys. 9, 248 (2013)

    Article  Google Scholar 

  20. M. Breusing, C. Ropers, and T. Elsaesser, Ultrafast carrier dynamics in graphite, Phys. Rev. Lett. 102(8), 086809 (2009)

    Article  ADS  Google Scholar 

  21. M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, Ultrafast nonequilibrium carrier dynamics in a single graphene layer, Phys. Rev. B 83(15), 153410(2011)

    Article  ADS  Google Scholar 

  22. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene, Nano Lett. 8(12), 4248 (2008)

    Article  ADS  Google Scholar 

  23. C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, Ultrafast photoluminescence from graphene, Phys. Rev. Lett. 105(12), 127404 (2010)

    Article  ADS  Google Scholar 

  24. L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, Broadband ultrafast nonlinear optical response of few-layers graphene: Toward the mid-infrared regime, Photon. Res. 3(5), 214 (2015)

    Article  Google Scholar 

  25. Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength, Appl. Phys. Lett. 108(22), 221901 (2016)

    Article  ADS  Google Scholar 

  26. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater. 19(19), 3077 (2009)

    Article  Google Scholar 

  27. S. R. Bongu, P. B. Bisht, R. C. K. Namboodiri, P. Nayak, S. Ramaprabhu, T. J. Kelly, C. Fallon, and J. T. Costello, Influence of localized surface plasmons on Pauli blocking and optical limiting in graphene under femtosecond pumping, J. Appl. Phys. 116(7), 073101 (2014)

    Article  ADS  Google Scholar 

  28. J. J. Dean and H. M. V. Driel, Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment, Phys. Rev. B 82(12), 3893(2010)

    Article  Google Scholar 

  29. M. Zhang, G. Li, and L. Li, Graphene nanoribbons generate a strong third-order nonlinear optical response upon intercalating hexagonal boron nitride, J. Mater. Chem. C 2(8), 1482 (2014)

    Article  Google Scholar 

  30. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  31. H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, Optoelectronic devices based on two-dimensional transition metal dichalcogenides, Nano Res. 9(6), 1543 (2016)

    Article  Google Scholar 

  32. J. Liu, H. Cao, B. Jiang, Y. Xue, and L. Fu, Newborn 2D materials for flexible energy conversion and storage, Science China Mater. 59(6), 459 (2016)

    Article  ADS  Google Scholar 

  33. K. F. Mak and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics 10(4), 216 (2016)

    Article  ADS  Google Scholar 

  34. R. I. Woodward and Kelleher, Saturable absorbers for fibre lasers, Appl. Sci. (Basel) 5(4), 1440 (2015)

    Article  Google Scholar 

  35. T. Shishidou, A. J. Freeman, and R. Asahi, Effect of GGA on the half-metallicity of the itinerant ferromagnet, Phys. Rev. B 64(18), 180401(2001)

    Article  ADS  Google Scholar 

  36. K. Takada, H. Sakurai, E. Takayama-Muromachi, E. Izumi, R. Dilanian, and T. Sasaki, Superconductivity in two-dimensional CoO2 layers, Nature 422(6927), 53 (2003)

    Article  ADS  Google Scholar 

  37. J. T. Jang, S. Jeong, J. W. Seo, M. C. Kim, E. Sim, Y. Oh, S. Nam, B. Park, and J. Cheon, Ultrathin zirconium disulfide nanodiscs, J. Am. Chem. Soc. 133(20), 7636 (2011)

    Article  Google Scholar 

  38. J. W. Seo, Y. W. Jun, S. W. Park, H. Nah, T. Moon, B. Park, J. G. Kim, Y. J. Kim, and J. Cheon, Two-dimensional nanosheet crystals, Angew. Chem. Int. Ed. Engl. 46(46), 8828 (2007)

    Article  Google Scholar 

  39. M. R. Gao, X. Cao, Q. Gao, Y. F. Xu, Y. R. Zheng, J. Jiang, and S. H. Yu, Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation, ACS Nano 8(4), 3970 (2014)

    Article  Google Scholar 

  40. C. Altavilla, M. Sarno, and P. Ciambelli, A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W), Chem. Mater. 23(17), 3879 (2011)

    Article  Google Scholar 

  41. S. Jeong, D. Yoo, J. T. Jang, M. Kim, and J. Cheon, Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols, J. Am. Chem. Soc. 134(44), 18233 (2012)

    Article  Google Scholar 

  42. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)

    Article  ADS  Google Scholar 

  43. B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2, Nano Lett. 13(9), 4212 (2013)

    Article  ADS  Google Scholar 

  44. D. Lembke and A. Kis, Breakdown of high-performance monolayer MoS2 transistors, ACS Nano 6(11), 10070 (2012)

    Article  Google Scholar 

  45. G. Eda and S. A. Maier, Two-dimensional crystals: Managing light for optoelectronics, ACS Nano 7(7), 5660 (2013)

    Article  Google Scholar 

  46. L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, Chloride molecular doping technique on 2D materials: WS2 and MoS2, Nano Lett. 14(11), 6275 (2014)

    Article  ADS  Google Scholar 

  47. Y. Yoon, K. Ganapathi, and S. Salahuddin, How good can monolayer MoS2 transistors Be? Nano Lett. 11(9), 3768 (2011)

    Article  ADS  Google Scholar 

  48. Y. J. Zhang, J. T. Ye, Y. Matsuhashi, and Y. Iwasa, Ambipolar MoS2 thin flake transistors, Nano Lett. 12(3), 1136 (2012)

    Article  ADS  Google Scholar 

  49. K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles, Phys. Rev. B 85(11), 115317 (2012)

    Article  ADS  Google Scholar 

  50. B. Radisavljevic, M. B. Whitwick, and A. Kis, Correction to integrated circuits and logic operations based on single-layer MoS2, ACS Nano 7(4), 3729 (2013)

    Article  Google Scholar 

  51. H. Wang, L. L. Yu, Y. H. Lee, Y. M. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, and T. Palacios, Integrated circuits based on bilayer MoS2 transistors, Nano Lett. 12(9), 4674 (2012)

    Article  ADS  Google Scholar 

  52. H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Lett. 12(7), 3695 (2012)

    Article  ADS  Google Scholar 

  53. F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, Chemical vapor sensing with monolayer MoS2Nano Lett. 13(2), 668 (2013)

    Article  ADS  Google Scholar 

  54. R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, Electroluminescence in single layer MoS2Nano Lett. 13(4), 1416 (2013)

    Article  ADS  Google Scholar 

  55. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics, Opt. Express 22(6), 7249 (2014)

    Article  ADS  Google Scholar 

  56. R. Hao, J. M. Jin, X. L. Peng, and E. Li, Dynamic control of wideband slow wave in graphene based waveguides, Opt. Lett. 39(11), 3094 (2014)

    Article  ADS  Google Scholar 

  57. H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber, Opt. Express 22(14), 17341 (2014)

    Article  ADS  Google Scholar 

  58. K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers, Opt. Express 23(9), 11453 (2015)

    Article  ADS  Google Scholar 

  59. P. G. Yan, A. J. Liu, Y. S. Chen, H. Chen, S. C. Ruan, C. Y. Guo, S. F. Chen, I. L. Li, H. P. Yang, J. G. Hu, and G. Z. Cao, Microfiber-based WS2-film saturable absorber for ultra-fast photonics, Opt. Mater. Express 5(3), 479 (2015)

    Article  ADS  Google Scholar 

  60. M. Liu, X. W. Zheng, Y. L. Qi, H. Liu, A. P. Luo, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, Microfiber-based few-layer MoS2 saturable absorber for 25 GHz passively harmonic mode-locked fiber laser, Opt. Express 22(19), 22841 (2014)

    Article  ADS  Google Scholar 

  61. Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, 1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS2 Saturable Absorber, J. Lightwave Technol. 32(24), 4679 (2014)

    Article  Google Scholar 

  62. L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. B. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)

    Article  ADS  Google Scholar 

  63. H. H. Churchill and P. Jarillo-Herrero, Phosphorus joins the family, Nat. Nanotechnol. 9(5), 330 (2014)

    Article  ADS  Google Scholar 

  64. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An Unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)

    Article  Google Scholar 

  65. M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett. 14(6), 3347 (2014)

    Article  ADS  Google Scholar 

  66. N. Junhong, L. Young Tack, L. Jung Ah, H. Do Kyung, K. Gyu-Tae, C. Won Kook, and S. Yong-Won, Few-layer black phosphorus field-effect transistors with reduced current fluctuation, ACS Nano, 8(11), 11753 (2014)

    Article  Google Scholar 

  67. Z. B. Yang, J. H. Hao, S. G. Yuan, S. H. Lin, H. M. Yau, J. Y. Dai, and S. P. Lau, Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition, Adv. Mater. 27(25), 3748 (2015)

    Article  Google Scholar 

  68. T. Hong, B. Chamlagain, W. Z. Lin, H. J. Chuang, M. H. Pan, Z. X. Zhou, and Y. Q. Xu, Polarized photocurrent response in black phosphorus field-effect transistors, Nanoscale 6(15), 8978 (2014)

    Article  ADS  Google Scholar 

  69. Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, Metal-ion-modified black phosphorus with enhanced stability and transistor performance, Adv. Mater. 29, (2017)

  70. Y. Zhou, M. Zhang, Z. Guo, L. Miao, S. T. Han, Z. Wang, X. Zhang, H. Zhang, and Z. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices, Mater. Horiz. 4(6), 997 (2017)

    Article  Google Scholar 

  71. M. Qiu, Z. T. Sun, D. K. Sang, X. G. Han, H. Zhang, and C. M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage, Nanoscale 9(36), 13384 (2017)

    Article  Google Scholar 

  72. Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun, Y. Yao, S. Li, Q. Bao, H. Zhang, and Y. Zhang, Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility, Adv. Funct. Mater. 27(38), 1702211 (2017)

    Article  Google Scholar 

  73. M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett. 14(6), 3347 (2014)

    Article  ADS  Google Scholar 

  74. N. Youngblood, C. Chen, S. J. Koester, and M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current, Nat. Photonics 9(4), 247 (2015)

    Article  ADS  Google Scholar 

  75. H. T. Yuan, X. G. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. J. Ye, Y. Hikita, Z. X. Shen, S. C. Zhang, X. H. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, Polarization-sensitive broadband photodetector using a black phosphorus vertical p—n junction, Nat. Nanotechnol. 10(8), 707 (2015)

    Article  ADS  Google Scholar 

  76. J. S. Qiao, X. H. Kong, Z. X. Hu, F. Yang, and W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5, 4475 (2014)

    Article  ADS  Google Scholar 

  77. Y. Li, S. Yang, and J. Li, Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field, J. Phys. Chem. C 118(41), 23970 (2014)

    Article  Google Scholar 

  78. J. Dai and X. C. Zeng, Bilayer phosphorene, J. Phys. Chem. Lett. 5(7), 1289 (2014)

    Article  Google Scholar 

  79. A. Zhuang, J. J. Li, Y. C. Wang, X. Wen, Y. Lin, B. Xiang, X. Wang, and J. Zeng, Screw-dislocation-driven bidirectional spiral growth of Bi2Se3 nanoplates, Angew. Chem. Int. Ed. Engl. 53(25), 6425 (2014)

    Article  Google Scholar 

  80. M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  ADS  Google Scholar 

  81. C. Y. Chen, Z. J. Xie, Y. Feng, H. M. Yi, A. J. Liang, S. L. He, D. X. Mou, J. F. He, Y. Y. Peng, X. Liu, Y. Liu, L. Zhao, G. D. Liu, X. L. Dong, J. Zhang, L. Yu, X. Y. Wang, Q. J. Peng, Z. M. Wang, S. J. Zhang, F. Yang, C. T. Chen, Z. Y. Xu, and X. J. Zhou, Tunable Dirac fermion dynamics in topological insulators, Sci. Rep. 3(10), 2411 (2013)

    Article  Google Scholar 

  82. C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker: Erratum, Opt. Express 21(1), 444 (2013)

    Article  ADS  Google Scholar 

  83. H. Zhang, X. He, W. Lin, R. Wei, F. Zhang, X. Du, G. Dong, and J. Qiu, Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets, Opt. Express 23(10), 13376 (2015)

    Article  ADS  Google Scholar 

  84. X. He, H. Zhang, W. Lin, R. Wei, J. Qiu, M. Zhang, and B. Hu, PVP-assisted solvothermal synthesis of high-yielded Bi2Te3 hexagonal nanoplates: Application in passively Q-switched fiber laser, Sci. Rep. 5(1), 15868 (2015)

    Article  ADS  Google Scholar 

  85. H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, Topological insulator as an optical modulator for pulsed solid-state lasers, Laser Photon. Rev. 7(6), L77 (2013)

    Article  ADS  Google Scholar 

  86. H. Huang, Y. Li, Q. Li, B. Li, Z. Song, W. Huang, C. Zhao, H. Zhang, S. Wen, D. Carroll, and G. Fang, Field electron emission of layered Bi2Se3 nanosheets with atomthick sharp edges, Nanoscale 6(14), 8306 (2014)

    Article  ADS  Google Scholar 

  87. Y. Tan, H. Zhang, C. Zhao, S. Akhmadaliev, S. Zhou, and F. Chen, Bi2Se3 Q-switched Nd:YAG ceramic waveguide laser, Opt. Lett. 40(4), 637 (2015)

    Article  ADS  Google Scholar 

  88. X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, Bismuth telluride topological insulator nanosheet saturable absorbers for Q-switched mode-locked Tm:ZBLAN waveguide lasers, Ann. Phys. 528(7–8), 543 (2016)

    Article  Google Scholar 

  89. M. Liu, Z. R. Cai, S. Hu, A. P. Luo, C. J. Zhao, H. Zhang, W. C. Xu, and Z. C. Luo, Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device, Opt. Lett. 40(20), 4767 (2015)

    Article  ADS  Google Scholar 

  90. C. R. Ast and H. Hochst, Electronic structure of a bismuth bilayer, Phys. Rev. B 67(11), 181 (2003)

    Article  Google Scholar 

  91. Y. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V. Chulkov, S. Blugel, P. M. Echenique, and P. Hofmann, Strong spin-orbit splitting on Bi surfaces, Phys. Rev. Lett. 93(4), 046403 (2004)

    Article  ADS  Google Scholar 

  92. E. J. Tichovolsky and J. G. Mavroides, Magnetoreflection studies on the band structure of bismuth-antimony alloys, Solid State Commun. 7(13), 927 (1969)

    Article  ADS  Google Scholar 

  93. Y. Ohtsubo, L. Perfetti, M. O. Goerbig, P. Le Fevre, F. Bertran, and A. Taleb-Ibrahimi, Non-trivial surface-band dispersion on bi(111), New J. Phys. 15, 033041 (2013)

    Article  ADS  Google Scholar 

  94. L. Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, and N. P. Ong, Phase transitions of Dirac electrons in bismuth, Science 321(5888), 547 (2008)

    Article  ADS  Google Scholar 

  95. S. Murakami, Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling, Phys. Rev. Lett. 97(23), 236805 (2006)

    Article  ADS  Google Scholar 

  96. J. P. Issi, Low temperature transport properties of the group V semimetals, Aust. J. Phys. 32(6), 585 (1979)

    Article  ADS  Google Scholar 

  97. P. Hofmann, The surfaces of bismuth: Structural and electronic properties, Prog. Surf. Sci. 81(5), 191 (2006)

    Article  ADS  Google Scholar 

  98. Y. Guo, Y. F. Zhang, X. Y. Bao, T. Z. Han, Z. Tang, L. X. Zhang, W. G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. F. Jia, Z. X. Zhao, and Q. K. Xue, Superconductivity modulated by quantum size effects, Science 306(5703), 1915 (2004)

    Article  ADS  Google Scholar 

  99. L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability, Laser Photon. Rev. 12(1), 1870012 (2018)

    Article  ADS  Google Scholar 

  100. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, Broadband nonlinear optical response of graphene dispersions, Adv. Mater. 21(23), 2430 (2009)

    Article  Google Scholar 

  101. H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Z. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide, ACS Nano 4(12), 7582 (2010)

    Article  Google Scholar 

  102. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser, Appl. Phys. Lett. 96(11), 111112 (2010)

    Article  ADS  Google Scholar 

  103. J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, Tm3/Ho3+ co-doped LiGd(MoO4)2 crystal as laser gain medium around 20 um, Opt. Mater. Express 2(8), 878 (2012)

    Article  ADS  Google Scholar 

  104. Z. W. Zheng, C. J. Zhao, S. B. Lu, Y. Chen, Y. Li, H. Zhang, and S. C. Wen, Microwave and optical saturable absorption in graphene, Opt. Express 20(21), 23201 (2012)

    Article  ADS  Google Scholar 

  105. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, Coherent nonlinear optical response of graphene, Phys. Rev. Lett. 105(9), 097401 (2010)

    Article  ADS  Google Scholar 

  106. M. B. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials, Appl. Phys. Lett. 98(8), 081106 (2011)

    Article  ADS  Google Scholar 

  107. W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, The nonlinear optical properties of coupling and decoupling graphene layers, AIP Adv. 3(4), 042123 (2013)

    Article  ADS  Google Scholar 

  108. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’ Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, Ultrafast saturable absorption of two-dimensional MoS2 nanosheets, ACS Nano 7(10), 9260 (2013)

    Article  Google Scholar 

  109. X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance, Nanoscale 7(7), 2978 (2015)

    Article  ADS  Google Scholar 

  110. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)

    Article  ADS  Google Scholar 

  111. A. Pulkin and O. V. Yazyev, Spin- and valley-polarized transport across line defects in monolayer MoS2, Phys. Rev. B 93(4), 041419 (2016)

    Article  ADS  Google Scholar 

  112. Q. Ouyang, H. Yu, K. Zhang, and Y. Chen, Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films, J. Mater. Chem. C 2(31), 6319 (2014)

    Article  Google Scholar 

  113. K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets, Small 11(6), 694 (2015)

    Article  Google Scholar 

  114. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, WS2 mode-locked ultrafast fiber laser, Sci. Rep. 5(1), 7965 (2015)

    Article  ADS  Google Scholar 

  115. R. F. Wei, H. Zhang, Z. L. Hu, T. Qiao, X. He, Ultrabroadband nonlinear saturable absorption of high-yield MoS2 nanosheets, Nanotechnology 27(30), 305203 (2016)

    Article  Google Scholar 

  116. F. Bernard, Z. Han, S. P. Gorza, and P. Emplit, Towards mode-locked fiber laser using topological insulators, Nonlin. Photon. 5, 2012

  117. C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker, Opt. Express 20(25), 27888 (2012)

    Article  ADS  Google Scholar 

  118. C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, Ultra-short pulse generation by a topological insulator based saturable absorber, Appl. Phys. Lett. 101(21), 118(2012)

    Article  Google Scholar 

  119. S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, Third order nonlinear optical property of Bi2Se3, Opt. Express 21(2), 2072 (2013)

    Article  ADS  Google Scholar 

  120. Z. Q. Luo, C. Liu, Y. Z. Huang, D. D. Wu, J. Y. Wu, H. Y. Xu, Z. P. Cai, Z. Q. Lin, L. P. Sun, and J. Weng, Topological-insulator passively Q-switched double-clad fiber laser at 2 um wavelength, IEEE J. Sel. Top. Quant. 902708 2014, 20(5)

  121. M. Jung, J. Lee, J. Koo, J. Park, Y. W. Song, K. Lee, S. Lee, and J. H. Lee, A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator, Opt. Express 22(7), 7865 (2014)

    Article  ADS  Google Scholar 

  122. B. Weitzel and H. Micklitz, Superconductivity in granular systems built from well-defined rhombohedral Bi-clusters: Evidence for Bi-surface superconductivity, Phys. Rev. Lett. 66(3), 385 (1991)

    Article  ADS  Google Scholar 

  123. L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, Widely spaced bound states in a soliton fiber laser with graphene saturable absorber, IEEE Photon. Technol. Lett. 25(12), 1184 (2013)

    Article  ADS  Google Scholar 

  124. L. Cheng, H. Liu, X. Tan, J. Zhang, J. Wei, and H. Lv, Thermoelectric properties of a monolayer bismuth, J. Phys. Chem. C 118(2), 904 (2014)

    Article  Google Scholar 

  125. Y. M. Koroteev, G. Bihlmayer, E. V. Chulkov, and S. Blügel, First-principles investigation of structural and electronic properties of ultrathin Bi films, Phys. Rev. B 77(4), 045428 (2008)

    Article  ADS  Google Scholar 

  126. B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber, Opt. Express 26(18), 22750 (2018)

    Article  ADS  Google Scholar 

  127. Q. Q. Yang, R. T. Liu, C. Huang, Y. F. Huang, L. F. Gao, B. Sun, Z. P. Huang, L. Zhang, C. X. Hu, Z. Q. Zhang, C. L. Sun, Q. Wang, Y. L. Tang, and H. L. Zhang, 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers, Nanoscale 10(45), 21106 (2018)

    Article  Google Scholar 

  128. P. Zijlstra, J. W. Chon, and M. Gu, Five-dimensional optical recording mediated by surface plasmons in gold nanorods, Nature 459(7245), 410 (2009)

    Article  ADS  Google Scholar 

  129. D. Tan, Y. Yamada, S. Zhou, Y. Shimotsuma, K. Miura, and J. Qiu, Carbon nanodots with strong nonlinear optical response, Carbon 69, 638 (2014)

    Article  Google Scholar 

  130. R. L. Gieseking, S. Mukhopadhyay, C. Risko, and J. L. Brédas, Impact of the nature of the excited-state transition dipole moments on the third-order nonlinear optical response of polymethine dyes for all-optical switching applications, ACS Photon. 1(3), 261 (2014)

    Article  Google Scholar 

  131. W. Man, C. Yu, Z. Han, and W. Shuangchun, Nanosecond Q-switched erbium-doped fiber laser with wide pulse-repetition-rate range based on topological insulator, IEEE J. Quantum Electron. 50, 393 (2014)

    Article  Google Scholar 

  132. Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser, IEEE J. Sel. Top. Quantum Electron. 20(5), 315 (2014)

    Article  ADS  Google Scholar 

  133. F. Yan, W. Peng, S. Liu, T. Feng, Z. Dong, and G. K. Chang, Dual-wavelength single-longitudinal-mode tm-doped fiber laser using PM-CMFBG, IEEE Photonics Technol. Lett. 27(9), 264 (2015)

    Article  ADS  Google Scholar 

  134. C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser, Opt. Commun. 406, 158 (2018)

    Article  ADS  Google Scholar 

  135. P. Ge, J. Liu S. Jiang, Y. Xu, and B. Man, Compact Q-switched 2 m Tm:GdVO4 laser with MoS2 absorber, Photon. Res. 3(5), 256 (2015)

    Article  Google Scholar 

  136. J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region, Opt. Express 24(26), 30289 (2016)

    Article  ADS  Google Scholar 

  137. Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, Ultrafast photonics application of graphdiyne in the optical communication region, Carbon 149, 336 (2019)

    Article  Google Scholar 

  138. T. C. Feng, X. H. Li, T. Chai, P. L. Guo, Y. Zhang, R. S. Liu, J. S. Liu, J. B. Lu, and Y. Q. Ge, Bismuthene nanosheets for 1-µm multipulse generation, Langmuir 36(1), 3 (2020)

    Article  Google Scholar 

  139. Z. J. Shi, W. X. Xu, X. H. Li, and Z. Hui, Cuprous sulfide for different laser pulse generation: Q-switching and mode-locking, J. Phys. Chem. C 123(46), 28370 (2019)

    Article  Google Scholar 

  140. J. Feng, X. Li, Z. Shi, C. Zheng, X. Li, D. Leng, Y. Wang, J. Liu, and L. Zhu, 2D ductile transition metal chalcogenides (TMCs): A novel hiah-performance Ag2S nanosheets for ultrafast photonics, Adv. Opt. Mater. 8(6), 1901762 (2020)

    Article  Google Scholar 

  141. J. S. Liu, X. H. Li, Y. X. Guo, A. Qyyum, Z. J. Shi, T. C. Feng, Y. Zhang, C. X. Jiang, and X. F. Liu, SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation, Small 15(38), 1902811 (2019)

    Article  Google Scholar 

  142. T. C. Feng, D. Zhang, X. H. Li, Q. Abdul, Z. J. Shi, J. B. Lu, P. L. Guo, Y. Zhang, J. S. Liu, and Q. J. Wang, SnS2 nanosheets for Er-doped fiber lasers, ACS Appl. Nanomater. (Basel) 3(1), 674 (2020)

    Google Scholar 

  143. X. H. Li, X. C. Yu, Z. P. Sun, Z. Y. Yan, B. Sun, Y. B. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction, Sci. Rep. 5(1), 16624 (2015)

    Article  ADS  Google Scholar 

  144. X. H. Li, K. Wu, Z. P. Sun, B. Meng, Y. G. Wang, Y. S. Wang, X. C. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers, Sci. Rep. 6(1), 25266 (2016)

    Article  ADS  Google Scholar 

  145. L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, and H. Y. Tam, Coexistence ofpolarization-locked and polarizationrotating vector solitons in a fiber laser with SESAM, Opt. Lett. 34(20), 3059 (2009)

    Article  ADS  Google Scholar 

  146. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, Polarization rotation locking of vector solitons in a fiber ring laser, Opt. Express 16(14), 10053 (2008)

    Article  ADS  Google Scholar 

  147. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, Soliton trapping in fiber lasers, Opt. Express 16(13), 9528 (2008)

    Article  ADS  Google Scholar 

  148. H. Zhang, D. Y. Tang, L. M. Zhao, and H. Y. Tam, Induced solitons formed by cross-polarization coupling in a birefringent cavity fiber laser, Opt. Lett. 33(20), 2317 (2008)

    Article  ADS  Google Scholar 

  149. L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, Dissipative soliton trapping in normal dispersion-fiber lasers, Opt. Lett. 35(11), 1902 (2010)

    Article  ADS  Google Scholar 

  150. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, Bunch of restless vector solitons in a fiber laser with SESAM, Opt. Express 17(10), 8103 (2009)

    Article  ADS  Google Scholar 

  151. J. Ma, Z. Qin, G. Xie, L. Qian, and D. Tang, Review of mid-infrared mode-locked laser sources in the 2.0–3.5 µm spectral region, Appl. Phys. Rev. 6(2), 021317 (2019)

    Article  ADS  Google Scholar 

  152. G. Chang and Z. Wei, Ultrafast fiber lasers: An expanding versatile toolbox, iScience 23(5) 101101 (2020)

    Article  ADS  Google Scholar 

  153. C. Shang, Y. Zhang, H. Qin, B. He, C. Zhang, J. Sun, J. Li, J. Ma, X. Ji, L. Xu, and B. Fu., Review on wavelength-tunable pulsed fiber lasers based on 2D materials, Opt. Laser Technol. 131, 106375 (2020)

    Article  Google Scholar 

  154. Y. Han, Y. Guo, B. Gao, C. Ma, H. Zhang, and H. Zhang, Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers, Prog. Quantum Electron. 71, 100264 (2020)

    Article  Google Scholar 

  155. T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, Ultrafast fiber lasers mode-locked by two-dimensional materials: Review and prospect, Photon. Res. 8(1), 78 (2020)

    Article  Google Scholar 

  156. P. L. Huang, S. Lin, C. Yeh, H. Kuo, S. Huang, G. Lin, L. Li, C. Su, and W. Cheng, Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber, Opt. Express 20(3), 2460 (2012)

    Article  ADS  Google Scholar 

  157. Z. Zheng, C. Zhao, S. Lu, Y. Chen, H. Li, Y. Zhang, and S. Wen, Microwave and optical saturable absorption in graphene, Opt. Express 20(21), 23201 (2012)

    Article  ADS  Google Scholar 

  158. B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 mm, IEEE J. Sel. Top. Quantum Electron. 20(5), 1100705 (2014)

    Google Scholar 

  159. L. Liu, H. T. Hattori, E. G. Mironov, and A. Khaleque, Composite chromium and graphene oxide as saturable absorber in ytterbium-doped Q-switched fiber lasers, Appl. Opt. 53(6), 1173 (2014)

    Article  ADS  Google Scholar 

  160. L. Li, X. Zheng, X. Chen, M. Qi, Z. Ren, J. Bai, and Z. Sun, High-power diode-side-pumped Nd:YAG solid laser mode-locked by CVD graphene, Opt. Comm. 315, 204 (2014)

    Article  ADS  Google Scholar 

  161. X. Li, W. Zou, and J. Chen, 419 fs hybridly mode-locked Er-doped fiber laser at 212 MHz repetition rate, Opt. Lett. 39(6), 1553 (2014)

    Article  ADS  Google Scholar 

  162. Q. Wen, X. Zhang, Y. Wang, Y. Wang, and H. Niu, Passively Q-switched Nd:YAG laser with graphene oxide in heavy water, IEEE Photon. J. 6(2), 1 (2014)

    Article  Google Scholar 

  163. J. Xu, S. Wu, J. Liu, Y. Li, J. Ren, Q. H. Yang, and P. Wang, All-polarization-maintaining femtosecond fiber lasers using graphene oxide saturable absorber, IEEE Photon. Technol. Lett. 26(4), 346 (2014)

    Article  ADS  Google Scholar 

  164. X. He, D. N. Wang, and Z. B. Liu, Pulse-width tuning in a passively mode-locked fiber laser with graphene saturable absorber, IEEE Photon. Technol. Lett. 26(4), 360 (2014)

    Article  ADS  Google Scholar 

  165. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation, Opt. Express 23(10), 12823 (2015)

    Article  ADS  Google Scholar 

  166. F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, and X. Xu, Strong optical limiting behavior discovered in black phosphorus, RSC Adv. 6(24), 20027 (2016)

    Article  ADS  Google Scholar 

  167. F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, and X. Xu, Nonlinear optical effects in nitrogen-doped graphene, RSC Adv. 6(5), 3526 (2016)

    Article  ADS  Google Scholar 

  168. J. L. Wu, B. Gu, N. Sheng, D. Liu, and Y. Cui, Enhanced optical limiting effects in a double-decker bis(phthalocyaninato) rare earth complex using radially polarized beams, Appl. Phys. Lett. 105(17), 171113 (2014)

    Article  ADS  Google Scholar 

  169. C. Zheng, W. Chen, S. Cai, X. Xiao, and X. Ye, Enhanced optical limiting properties of graphene oxide/triangular Pd nanocrystal composites, Mater. Lett. 131, 284 (2014)

    Article  Google Scholar 

  170. A. A. Ryzhov, I. M. Belousova, Y. Wang, H. Qi, and J. Wang, Optical limiting properties of a nonlinear multilayer Fabry-Perot resonator containing niobium pentoxide as nonlinear medium, Opt. Lett. 39(16), 4847 (2014)

    Article  ADS  Google Scholar 

  171. A. Diallo, S. Zongo, P. Mthunzi, S. Rehman, S. Y. Alqaradawi, W. Soboyejo, and M. Maaza, Z-scan and optical limiting properties of Hibiscus Sabdariffa dye, Appl. Phys. B 117(3), 861 (2014)

    Article  ADS  Google Scholar 

  172. I. Papagiannouli, A. B. Bourlinos, A. Bakandritsos, and S. Couris, Nonlinear optical properties of colloidal carbon nanoparticles: Nanodiamonds and carbon dots, RSC Advances 4(76), 40152 (2014)

    Article  ADS  Google Scholar 

  173. P. Aloukos, I. Papagiannouli, A. B. Bourlinos, R. Zboril, and S. Couris, Third-order nonlinear optical response and optical limiting of colloidal carbon dots, Opt. Express 22(10), 12013 (2014)

    Article  ADS  Google Scholar 

  174. M. J. Weber, D. Milam, and W. L. Smith, Nonlinear refractive index of glasses and crystals, Opt. Eng. 17(5), 463 (1978)

    Article  ADS  Google Scholar 

  175. R. Adair, L. L. Chase, and S. A. Payne, Nonlinear refractive-index measurements of glasses using three-wave frequency mixing, J. Opt. Soc. Anier. B 4(6), 875 (1987)

    Article  ADS  Google Scholar 

  176. C. Cheng, Z. Li, N. Dong, J. Wang, and F. Chen, Tin diselenide as a new saturable absorber for generation of laser pulses at 1 m, Opt. Express 25(6), 6132 (2017)

    Article  ADS  Google Scholar 

  177. S. L. Wong, H. Liu, and D. Chi, Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides, Prog. Cryst. Growth Charact. Mater. 62(3), 9 (2016)

    Article  Google Scholar 

  178. K. Yan, L. Fu, H. L. Peng, and Z. F. Liu, Designed CVD growth of graphene via process engineering, Acc. Chem. Res. 46(10), 2263 (2013)

    Article  Google Scholar 

  179. D. Hanlon, C. Backes, E. Doherty, C. S. Cucinotta, N. C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q. M. Ramasse, N. McEvoy, W. J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D. D. O’ Regan, G. S. Duesberg, V. Nicolosi, and J. N. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics, Nat. Commun. 6(1), 8563 (2015)

    Article  ADS  Google Scholar 

  180. H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaS2, Small 9(11), 1974 (2013)

    Article  Google Scholar 

  181. A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, Isolation and characterization of few-layer black phosphorus, 2D Mater. 1, 025001 (2014)

    Article  Google Scholar 

  182. S. S. Hong, W. Kundhikanjana, J. J. Cha, K. Lai, D. Kong, S. Meister, M. A. Kelly, Z. X. Shen, and Y. Cui, Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy, Nano Lett. 10(8), 3118 (2010)

    Article  ADS  Google Scholar 

  183. L. H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, and A. M. Glushenkov, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling, J. Mater. Chem. 21(32), 11862 (2011)

    Article  Google Scholar 

  184. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1), 228 (2010)

    Article  Google Scholar 

  185. J. M. Hughes, D. Aherne, and J. N. Coleman, Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions, J. Appl. Polym. Sci. 127(6), 4483 (2013)

    Article  Google Scholar 

  186. Y. Hernandez, M. Lotya, D. Rickard, S. D. Bergin, and J. N. Coleman, Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery, Langmuir 26(5), 3208 (2010)

    Article  Google Scholar 

  187. A. O’ Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, Graphene dispersion and exfoliation in low boiling point solvents, J. Phys. Chem. C 115(13), 5422 (2011)

    Article  Google Scholar 

  188. A. B. Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, and A. K. Stubos, Liquid-phase exfoliation of graphite towards solubilized graphenes, Small 5(16), 1841 (2009)

    Article  Google Scholar 

  189. G. Z. Magda, J. Peto, G. Dobrik, C. Hwang, L. P. Biro, and L. Tapaszto, Exfoliation of large-area transition metal chalcogenide single layers, Sci. Rep. 5(1), 14714 (2015)

    Article  ADS  Google Scholar 

  190. J. Zheng, H. Zhang, S. Dong, Y. Liu, C. T. Nai, H. S. Shin, H. Y. Jeong, B. Liu, and K. P. Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide, Nat. Commun. 5(1), 2995 (2014)

    Article  ADS  Google Scholar 

  191. G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds, ACS Nano 6(4), 3468 (2012)

    Article  Google Scholar 

  192. J. R. Brent, N. Savjani, E. A. Lewis, S. J. Haigh, D. J. Lewis, and P. O’ Brien, Production of few-layer phosphorene by liquid exfoliation of black phosphorus, Chem. Commun. (Camb.) 50(87), 13338 (2014)

    Article  Google Scholar 

  193. J. Kang, J. D. Wood, S. A. Wells, J. H. Lee, X. L. Liu, K. S. Chen, and M. C. Hersam, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus, ACS Nano 9(4), 3596 (2015)

    Article  ADS  Google Scholar 

  194. Y. Lin, T. V. Williams, and J. W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets, J. Phys. Chem. Lett. 1(1), 277 (2010)

    Article  Google Scholar 

  195. D. Yoo, M. Kim, S. Jeong, J. Han, and J. Cheon, Chemical synthetic strategy for single-layer transition-metal chalcogenides, J. Am. Chem. Soc. 136(42), 14670 (2014)

    Article  Google Scholar 

  196. A. N. Obraztsov, Making graphene on a large scale, Nat. Nanotechnol. 4(4), 212 (2009)

    Article  ADS  Google Scholar 

  197. T. Niu, M. Zhou, J. Zhang, Y. Feng, and W. Chen, Growth intermediates for CVD graphene on Cu(111): Carbon clusters and defective graphene, J. Am. Chem. Soc. 135(22), 8409 (2013)

    Article  Google Scholar 

  198. S. Tang, H. Wang, H. S. Wang, Q. Sun, X. Zhang, C. Cong, H. Xie, X. Liu, X. Zhou, F. Huang, X. Chen, T. Yu, F. Ding, X. Xie, and M. Jiang, Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride, Nat. Commun. 6(1), 6499 (2015)

    Article  ADS  Google Scholar 

  199. Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu, K. Zhang, H. Li, Z. Y. Juang, M. S. Dresselhaus, L. J. Li, and J. Kong, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition, Nano Lett. 10(10), 4134 (2010)

    Article  ADS  Google Scholar 

  200. S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.J. Kim, K. S. Kim, B. Özyilmaz, J.H. Ahn, B. H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5(8), 574 (2010)

    Article  ADS  Google Scholar 

  201. Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S. S. Pei, and Y. P. Chen, Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition, Nat. Mater. 10(6), 443 (2011)

    Article  ADS  Google Scholar 

  202. Y. Zhang, Y. F. Zhang, Q. Q. Ji, J. Ju, H. T. Yuan, J. P. Shi, T. Gao, D. L. Ma, M. X. Liu, Y. B. Chen, X. J. Song, H. Y. Hwang, Y. Cui, and Z. F. Liu, Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary, ACS Nano 7(10), 8963 (2013)

    Article  Google Scholar 

  203. Y. Shi, W. Zhou, A. Y. Lu, W. Fang, Y. H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L. J. Li, J. C. Idrobo, and J. Kong, van der Waals epitaxy of MoS2 layers using graphene as growth templates, Nano Lett. 12(6), 2784 (2012)

    Article  ADS  Google Scholar 

  204. C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition, Adv. Opt. Mater. 2(2), 131 (2014)

    Article  Google Scholar 

  205. W. W. Piper and S. J. Polich, Vapor-phase growth of single crystals of II-VI compounds, J. Appl. Phys. 32(7), 1278 (1961)

    Article  ADS  Google Scholar 

  206. H. Li, J. Cao, W. Zheng, Y. Chen, D. Wu, W. Dang, K. Wang, H. Peng, and Z. Liu, Controlled synthesis of topological insulator nanoplate arrays on mica, J. Am. Chem. Soc. 134(14), 6132 (2012)

    Article  Google Scholar 

  207. Z. H. Sun and H. X. Chang, Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology, ACS Nano 8(5), 4133 (2014)

    Article  Google Scholar 

  208. D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential, Nano Lett. 10(6), 2245 (2010)

    Article  ADS  Google Scholar 

  209. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nano Lett. 12(1), 161 (2012)

    Article  ADS  Google Scholar 

  210. P. Sutter, J. Lahiri, P. Albrecht, and E. Sutter, Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films, ACS Nano 5(9), 7303 (2011)

    Article  Google Scholar 

  211. K. H. Lee, H. J. Shin, J. Lee, I. Y. Lee, G. H. Kim, J. Y. Choi, and S. W. Kim, Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics, Nano Lett. 12(2), 714 (2012)

    Article  ADS  Google Scholar 

  212. K. Ueno, K. Saiki, T. Shimada, and A. Koma, Epitaxial growth of transition metal dichalcogenides on cleaved faces of mica, J. Vac. Sci. Technol. A 8(1), 68 (1990)

    Article  ADS  Google Scholar 

  213. Y. C. Lin, C. Y. Chang, R. K. Ghosh, J. Li, H. Zhu, R. Addou, B. Diaconescu, T. Ohta, X. Peng, N. Lu, M. J. Kim, J. T. Robinson, R. M. Wallace, T. S. Mayer, S. Datta, L. J. Li, and J. A. Robinson, Atomically thin heterostructures based on single-layer tungsten diselenide and graphene, Nano Lett. 14(12), 6936 (2014)

    Article  ADS  Google Scholar 

  214. W. Yang, G. Chen, Z. Shi, C. C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, and G. Zhang, Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater. 12(9), 792 (2013)

    Article  ADS  Google Scholar 

  215. P. Yan, H. Chen, J. Yin, Z. Xu, J. Li, Z. Jiang, W. Zhang, J. Wang, I. L. Li, Z. Sun, and S. Ruan, Large-area tungsten disulfide for ultrafast photonics, Nanoscale 9(5), 1871 (2017)

    Article  Google Scholar 

  216. A. Azizi, S. Eichfeld, G. Geschwind, K. H. Zhang, B. Jiang, D. Mukherjee, L. Hossain, A. F. Piasecki, B. Kabius, J. A. Robinson, and N. Alem, Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides, ACS Nano 9(5), 4882 (2015)

    Article  Google Scholar 

  217. X. Liu, I. Balla, H. Bergeron, G. P. Campbell, M. J. Bedzyk, and M. C. Hersam, Rotationally commensurate growth of MoS2 on epitaxial graphene, ACS Nano 10(1), 1067 (2016)

    Article  Google Scholar 

  218. Y. F. Song, H. Zhang, D. Y. Tang, and D. Y. Shen, Polarization rotation vector solitons in a graphene mode-locked fiber laser, Opt. Express 20(24), 27283 (2012)

    Article  ADS  Google Scholar 

  219. Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. Wen, Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications, Sci. Rep. 5(1), 16372 (2015)

    Article  ADS  Google Scholar 

  220. G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu, S. Chen, H. Zhang, and S. Wen, Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: Applications for ultra-fast laser photonics, ACS Appl. Mater. Interfaces 5(20), 10288 (2013)

    Article  Google Scholar 

  221. Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber, IEEE Photon. J. 4(3), 869 (2012)

    Article  ADS  Google Scholar 

  222. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater. 19(19), 3077 (2009)

    Article  Google Scholar 

  223. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, Tm-doped fiber laser mode-locked by graphene-polymer composite, Opt. Express 20(22), 25077 (2012).

    Article  ADS  Google Scholar 

  224. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, Graphene Q-switched, tunable fiber laser, Appl. Phys. Lett. 98(7), 073106 (2011)

    Article  ADS  Google Scholar 

  225. X. Liu, Q. Guo, and J. Qiu, Emerging low-dimensional materials for nonlinear optics and ultrafast photonics, Adv. Mater. 29(14), 1605886 (2017)

    Article  Google Scholar 

  226. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, Broadband few-layer MoS2 saturable absorbers, Adv. Mater. 26(21), 3538 (2014)

    Article  Google Scholar 

  227. H. Chen, X. Wen, J. Zhang, T. Wu, Y. Gong, X. Zhang, J. Yuan, C. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Zhang, and J. Zheng, Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures, Nat. Commun. 7(1), 12512 (2016)

    Article  ADS  Google Scholar 

  228. P. Yan, H. Chen, J. Yin, Z. Xu, J. Li, Z. Jiang, W. Zhang, J. Wang, I. L. Li, Z. Sun, and S. Ruan, Large-area tungsten disulfide for ultrafast photonics, Nanoscale 9(5), 1871 (2017)

    Article  Google Scholar 

  229. X. Li, S. Zhang, Y. Hao, and Z. Yang, Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system, Opt. Express 22(6), 6699 (2014)

    Article  ADS  Google Scholar 

  230. Z. Wang, Y. Xu, S. C. Dhanabalan, J. Sophia, C. Zhao, C. Xu, Y. Xiang, J. Li, and H. Zhang, Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser, IEEE Photonics J. 8(5), 1503310 (2016)

    Article  Google Scholar 

  231. J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers, Opt. Express 23(17), 22643 (2015)

    Article  ADS  Google Scholar 

  232. Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber, Opt. Express 24(23), 25933 (2016)

    Article  ADS  Google Scholar 

  233. Y. Xu, X. F. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. H. Xu, H. Zhang, X. F. Yu, and D. Fan, Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics, J. Mater. Chem. C 5(12), 3007 (2017)

    Article  Google Scholar 

  234. J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region, Opt. Express 24(26), 30289 (2016)

    Article  ADS  Google Scholar 

  235. J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers, Sci. Rep. 7(1), 42357 (2017)

    Article  ADS  Google Scholar 

  236. Y. Wang, J. Li, L. Han, R. Lu, Y. Hu, Z. Li, and Y. Liu, Q-switched Tm3+-doped fiber laser with a micro-fiber based black phosphorus saturable absorber, Laser Phys. 26(6), 065104 (2016)

    Article  ADS  Google Scholar 

  237. Y. Zhang, X. Li, A. Qyyum, T. Feng, P. Guo, J. Jiang, and H. Zheng, PbS nanoparticles for ultrashort pulse generation in optical communication region, Particle & Particle Systems Characterization 35(11), 1800341 (2018)

    Article  Google Scholar 

  238. L. Yun, Y. Qiu, C. Yang, J. Xing, K. Yu, X. Xu, and W. Wei, PbS quantum dots as a saturable absorber for ultrafast laser, Photon. Res. 6(11), 1028 (2018)

    Article  Google Scholar 

  239. J. Liu, H. Huang, F. Zhang, Z. Zhang, J. Liu, H. Zhang, and L. Su, Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF2 laser, Photon. Res. 6(8), 762 (2018)

    Article  Google Scholar 

  240. M. Pumera and Z. Sofer, 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus, Adv. Mater. 29(21), 1605299 (2017)

    Article  Google Scholar 

  241. L. Lu, W. Wang, L. Wu, X. Jiang, Y. Xiang, J. Li, D. Fan, and H. Zhang, All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation, ACS Photon. 4(11), 2852 (2017)

    Article  Google Scholar 

  242. Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, Drop-casted self-assembled topological insulator membrane as an effective saturable absorber for ultrafast laser photonics, IEEE Photon. J. 7(2), 1500911 (2015)

    Article  Google Scholar 

  243. Q. Wang, Y. Chen, L. Miao, G. Jiang, S. Chen, J. Liu, X. Fu, C. Zhao, and H. Zhang, Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer, Opt. Express 23(6), 7681 (2015)

    Article  ADS  Google Scholar 

  244. M. Liu, N. A. Zhao, H. Liu, X.W. Zheng, A.P. Luo, Z.C. Luo, W.C. Xu, C.J. Zhao, H. Zhang, and S.C. Wen, Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber, IEEE Photon. Technol. Lett. 26(10), 983 (2014)

    Article  ADS  Google Scholar 

  245. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, Broadband nonlinear photonics in few-layer MXene Ti3C2T (T = F, O, or OH), Laser Photon. Rev. 12(2), 1700229 (2018)

    Article  ADS  Google Scholar 

  246. X. Y. Feng, B. Y. Ding, W. Y. Liang, F. Zhang, T. Y. Ning, J. Liu, and H. Zhang, MXene Ti3C2Tx absorber for a 1.06 µm passively Q-switched ceramic laser, Laser Phys. Lett. 15(8), 085805 (2018)

    Article  ADS  Google Scholar 

  247. Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, and H. Zhang, A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm, Laser Phys. Lett. 16(1), 015803 (2019)

    Article  ADS  Google Scholar 

  248. Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability, 2D Mater. 4(4), 045010 (2017)

    Article  Google Scholar 

  249. P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS Appl. Mater. Interfaces 9(14), 12759 (2017)

    Article  Google Scholar 

  250. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, Graphene mode-locked ultrafast laser, ACS Nano 4(2), 803 (2010)

    Article  Google Scholar 

  251. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, Ultrafast all-optical graphene modulator, Nano Lett. 14(2), 955 (2014)

    Article  ADS  Google Scholar 

  252. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers, Sci. Rep. 6(1), 30361 (2016)

    Article  ADS  Google Scholar 

  253. X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, Graphene-clad microfibre saturable absorber for ultrafast fibre lasers, Sci. Rep. 6(1), 26024 (2016)

    Article  ADS  Google Scholar 

  254. S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, 2D materials for optical modulation: Challenges and opportunities, Adv. Mater. 29(14), 1606128 (2017)

    Article  Google Scholar 

  255. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Gate-variable optical transitions in graphene, Science 320(5873), 206 (2008)

    Article  ADS  Google Scholar 

  256. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, Graphene mode-locked ultrafast laser, ACS Nano 4(2), 803 (2010)

    Article  Google Scholar 

  257. D. B. S. Soh, R. Hamerly, and H. Mabuchi, Comprehensive analysis of the optical Kerr coefficient of graphene, Phys. Rev. A 94, 023845 (2016)

    Article  ADS  Google Scholar 

  258. E. Pop, V. Varshney, and A. K. Roy, Thermal properties of graphene: Fundamentals and applications, MRS Bull. 37(12), 1273 (2012)

    Article  Google Scholar 

  259. Y. Wu, X. Yan, P. Meng, P. Sun, G. Cheng, and R. Zheng, Carbon black/octadecane composites for room temperature electrical and thermal regulation, Carbon 94, 417 (2015)

    Article  Google Scholar 

  260. L. Wu, X. Jiang, J. Zhao, W. Liang, Z. Li, W. Huang, Z. Lin, Y. Wang, F. Zhang, S. Lu, Y. Xiang, S. Xu, J. Li, and H. Zhang, MXene-based nonlinear optical information converter for all-optical modulator and switcher, Laser Photon. Rev. 12(12), 215 (2018)

    Google Scholar 

  261. G. M. Paterno, L. Moretti, A. J. Barker, Q. Chen, K. Müllen, A. Narita, G. Cerullo, F. Scotognella, and G. Lanzani, Pump-push-probe for ultrafast all-optical switching: The case of a nanographene molecule, Adv. Funct. Mater. 29(21), 1805249 (2018)

    Article  Google Scholar 

  262. J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, Black phosphorus based all-optical-signal-processing: Toward high performances and enhanced stability, ACS Photon. 4(6), 1466 (2017)

    Article  Google Scholar 

  263. S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect, Adv. Opt. Mater. 3(12), 1769 (2015)

    Article  Google Scholar 

  264. Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, All-optical phosphorene phase modulator with enhanced stability under ambient conditions, Laser Photon. Rev. 12(6), 1800016 (2018)

    Article  ADS  Google Scholar 

  265. J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation, Adv. Opt. Mater. 5(9), 1700026 (2017)

    Article  Google Scholar 

  266. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun. 3(1), 780 (2012)

    Article  ADS  Google Scholar 

  267. B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. Xing, Unique prospects for graphene-based terahertz modulators, Appl. Phys. Lett. 99(11), 113104 (2011)

    Article  ADS  Google Scholar 

  268. Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, Graphene based all-optical spatial terahertz modulator, Sci. Rep. 4(1), 7409 (2015)

    Article  Google Scholar 

  269. Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, Wide wavelength tuning of optical antennas on graphene with nanosecond response time, Nano Lett. 14(1), 214 (2014)

    Article  ADS  Google Scholar 

  270. N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, Electrically tunable damping of plasmonic resonances with graphene, Nano Lett. 12(10), 5202 (2012)

    Article  ADS  Google Scholar 

  271. Z. Shi, L. Gan, T. H. Xiao, H. L. Guo, and Z. Y. Li, All-optical modulation of a graphene-cladded silicon photonic crystal cavity, ACS Photon. 2(11), 1513 (2015)

    Article  Google Scholar 

  272. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nat. Mater. 11(11), 936 (2012)

    Article  ADS  Google Scholar 

  273. Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2(3), 035011 (2015).

    Article  Google Scholar 

  274. X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector, Adv. Funct. Mater. 27(18), 1606834 (2017)

    Article  Google Scholar 

  275. P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. design for high-performance photodetectors, ACS Nano 10(9), 8474 (2016)

    Article  Google Scholar 

  276. Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P. K. Chu, and X. F. Yu, TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer, Small 13(11), 1602896 (2017)

    Article  Google Scholar 

  277. H. Xie, Z. Li, Z. Sun, J. Shao, X. F. Yu, Z. Guo, J. Wang, Q. Xiao, H. Wang, Q. Q. Wang, H. Zhang, and P. K. Chu, Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy, Small 12(30), 4136 (2016)

    Article  Google Scholar 

  278. W. Tao, X. Ji, X. Xu, M. A. Islam, Z. Li, S. Chen, P. E. Saw, H. Zhang, Z. Bharwani, Z. Guo, J. Shi, and O. C. Farokhzad, Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy, Angew. Chem. Int. Ed. Engl. 56(39), 11896 (2017)

    Article  Google Scholar 

  279. F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang, M. Xie, D. Yang, M. Qiu, H. Zhang, and Z. Li, Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells, J. Mater. Chem. B 5(27), 5433 (2017)

    Article  Google Scholar 

  280. M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, and Y. Cao, Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy, Proc. Natl. Acad. Sci. USA 115(3), 501 (2018)

    Article  Google Scholar 

  281. T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, Flexible transparent electronic gas sensors, Small 12(28), 3748 (2016)

    Article  Google Scholar 

  282. P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing, Small 11(40), 5409 (2015)

    Article  Google Scholar 

  283. T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, A flexible transparent colorimetric wrist strap sensor, Nanoscale 9(2), 869 (2017)

    Article  Google Scholar 

  284. X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors, J. Mater. Chem. A 5(14), 6581 (2017)

    Article  Google Scholar 

  285. R. Wang, X. Li, Z. Wang, and H. Zhang, Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive, Nano Energy 34, 131 (2017)

    Article  Google Scholar 

  286. D. Mao, S. L. Zhang, Y. D. Wang, X. T. Gan, W. D. Zhang, T. Mei, Y. G. Wang, Y. S. Wang, H. B. Zeng, and J. L. Zhao, WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 m, Opt. Express 23(21), 27509 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 61605106, 61875138, 61435010, and 6181101252); the International Science & Technology Cooperation and Exchanges Project of Shaanxi (No. 2020KW-005); Funded projects for the Academic Leader and Academic Backbones, Shaanxi Normal University (No. 18QNGG006); Starting Grants of Shaanxi Normal University (Grant Nos. 1112010209 and 1110010717); Fundamental Research Funds For the Central Universities (No. GK201802006); and the Open Research Fund of State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences (No. SKLST201809).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Hui Li or Han Zhang.

Additional information

Special Topic: Black Phosphorus and Its Analogues (Eds. Xianhui Chen, Haibo Zeng, Han Zhang & Yuanbo Zhang). This article can also be found at http://journal.hep.com.cn/fop/EN/https://doi.org/10.1007/s11467-021-1055-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XH., Guo, YX., Ren, Y. et al. Narrow-bandgap materials for optoelectronics applications. Front. Phys. 17, 13304 (2022). https://doi.org/10.1007/s11467-021-1055-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1055-z

Keywords

Navigation