Skip to main content
Log in

Resonant mode scanning to compute the spectrum of capillary surfaces with dynamic wetting effects

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A capillary surface bound by a solid rectangular channel exhibits dynamic wetting effects characterized by a constitutive law relating the dynamic contact-angle to the contact-line speed through the contact-line mobility \(\Lambda \) parameter. Limiting cases correspond to the free (\(\Lambda =0\)) and pinned (\(\Lambda =\infty \)) contact-line. Viscous potential flow is used to derive the governing integrodifferential equation from a boundary integral approach. The spectrum is determined from a boundary value problem where the eigenvalue parameter appears in the boundary condition. Here we introduce a new frequency scan approach to compute the spectrum, whereby we scan the complex frequency plane and compute the system response from which we identify the complex resonant frequency. Damping effects due to viscosity and Davis dissipation from finite \(\Lambda \) do not attenuate signal response, but rather shift the response poles into the complex plane. Our new approach is verified against an analytical solution in the appropriate limit. We identify the critical mobility that maximizes Davis dissipation and the critical Ohnesorge number (viscosity) where the transition from underdamped to overdamped oscillations occurs, as it depends upon the static contact-angle \(\alpha \). Our approach is applied to a rectangular channel, but is suitable for a myriad of geometric supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cox RG (1986) The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J Fluid Mech 168:169–194

    Article  MATH  Google Scholar 

  2. Jiang TS, Soo-Gun OH, Slattery JC (1979) Correlation for dynamic contact angle. J Colloid Interface Sci 69(1):74–77

    Article  Google Scholar 

  3. Kalliadasis S, Chang HC (1994) Apparent dynamic contact angle of an advancing gas–liquid meniscus. Phys Fluids 6(1):12–23

    Article  MathSciNet  MATH  Google Scholar 

  4. Newman S (1968) Kinetics of wetting of surfaces by polymers; capillary flow. J Colloid Interface Sci 26:209–213

    Article  Google Scholar 

  5. Shikhmurzaev YD (2008) Capillary flows with forming interfaces. Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  6. Bracke M, Voeght F, Joos P (1989) The kinetics of wetting: the dynamic contact angle. Prog Colloid Polym Sci 79:142–149

    Article  Google Scholar 

  7. Fries N, Dreyer M (2008) The transition from inertial to viscous flow in capillary rise. J Colloid Interface Sci 327(1):125–128

    Article  Google Scholar 

  8. Kistler SF (1993) Wettability. In: Berg J (ed) Wettability. Marcel Dekker, New York, p 311

    Google Scholar 

  9. Šikalo Š, Wilhelm HD, Roisman IV, Jakirlić S, Tropea C (2005) Dynamic contact angle of spreading droplets: experiments and simulations. Phys Fluids 17(6):1–13

    Article  MATH  Google Scholar 

  10. Saha AA, Mitra SK (2009) Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow. J Colloid Interface Sci 339(2):461–480

    Article  Google Scholar 

  11. Hocking LM (1987) The damping of capillary-gravity waves at a rigid boundary. J Fluid Mech 179:253–266

    Article  MATH  Google Scholar 

  12. Davis SH (1980) Moving contact lines and rivulet instabilities. Part 1. The static rivulet. J Fluid Mech 98(2):225–242

    Article  MathSciNet  MATH  Google Scholar 

  13. McCraney J, Weislogel M, Steen P (2020) OpenFOAM simulations of late stage container draining in microgravity. Fluids 5(4):207

    Article  Google Scholar 

  14. Jenson RM, Weislogel MM, Klatte J, Dreyer ME (2010) Dynamic fluid interface experiments aboard the international space station: model benchmarking dataset. J Spacecr Rockets 47(4):670–679

    Article  Google Scholar 

  15. Wölk G, Dreyer M, Rath HJ, Weislogel MM (1997) Damped oscillations of a liquid/gas surface upon step reduction in gravity. J Spacecr Rockets 34(1):110–117

    Article  Google Scholar 

  16. Bostwick JB, Steen PH (2014) Dynamics of sessile drops. Part 1. Inviscid theory. J Fluid Mech 760:5–38

    Article  MathSciNet  MATH  Google Scholar 

  17. Bostwick JB, Steen PH (2015) Stability of constrained capillary surfaces. Annu Rev Fluid Mech 47(May):539–568

    Article  MathSciNet  Google Scholar 

  18. Prosperetti A (1977) Viscous effects on perturbed spherical flows. Q Appl Math 34:339–352

    Article  MATH  Google Scholar 

  19. Prosperetti A (1980) Normal-mode analysis for the oscillations of a viscous liquid drop in an immiscible liquid. J Mech 19:149–182

    MathSciNet  MATH  Google Scholar 

  20. Joseph DD (2003) Viscous potential flow. J Fluid Mech 479(479):191–197

    Article  MathSciNet  MATH  Google Scholar 

  21. Joseph DD (2006) Helmholtz decomposition coupling rotational to irrotational flow of a viscous fluid. Proc Natl Acad Sci USA 103(39):14272–14277

    Article  Google Scholar 

  22. Lyubimova DV, Lyubimova TP, Shklyaev SV (2004) Non-axisymmetric oscillations of a hemispherical drop. Fluid Dyn 39(6):851–862

    Article  MathSciNet  MATH  Google Scholar 

  23. Steen PH, Chang CT, Bostwick JB (2019) Droplet motions fill a periodic table. Proc Natl Acad Sci USA 116(11):4849–4854

    Article  Google Scholar 

  24. Bostwick JB, Steen PH (2018) Static rivulet instabilities: varicose and sinuous modes. J Fluid Mech 837:819–838

    Article  MathSciNet  MATH  Google Scholar 

  25. Bostwick JB, Steen PH (2013) Coupled oscillations of deformable spherical-cap droplets. Part 2. Viscous motions. J Fluid Mech 714:336–360

    Article  MathSciNet  MATH  Google Scholar 

  26. Bostwick JB, Steen PH (2009) Capillary oscillations of a constrained liquid drop. Phys Fluids 21(3):032108

    Article  MATH  Google Scholar 

  27. Bostwick JB, Steen PH (2010) Stability of constrained cylindrical interfaces and the torus lift of Plateau–Rayleigh. J Fluid Mech 647:201–219

    Article  MathSciNet  MATH  Google Scholar 

  28. Strani M, Sabetta F (1984) Free vibrations of a drop in partial contact with a solid support. J Fluid Mech 141:233–247

    Article  MATH  Google Scholar 

  29. Lyubimov DV, Lyubimova TP, Cherepanov AA (2020) Resonance oscillations of a drop (bubble) in a vibrating fluid. J Fluid Mech 909:A18

    Article  MathSciNet  MATH  Google Scholar 

  30. Benjamin TB, Scott JC (1979) Gravity-capillary waves with edge constraints. J Fluid Mech 92(2):241–267

    Article  MathSciNet  MATH  Google Scholar 

  31. Graham-Eagle J (1983) A new method for calculating eigenvalues with applications to gravity-capillary waves with edge constraints. Math Proc Camb Philos Soc 94:553–564

    Article  MathSciNet  MATH  Google Scholar 

  32. Prosperetti A (2012) Linear oscillations of constrained drops, bubbles, and plane liquid surfaces. Phys Fluids 24(3):03219

    Article  Google Scholar 

  33. Bostwick JB, Steen PH (2013) Coupled oscillations of deformable spherical-cap droplets. Part 1. Inviscid motions. J Fluid Mech 714:312–335

    Article  MathSciNet  MATH  Google Scholar 

  34. Benjamin T, Ursell F (1954) The stability of the plane free surface of a liquid in vertical periodic motion. Proc R Soc Lond 225(1163):505–515

    MathSciNet  MATH  Google Scholar 

  35. Bostwick JB, Steen PH (2016) Response of driven sessile drops with contact-line dissipation. Soft Matter 12(43):8919–8926

    Article  Google Scholar 

  36. Chang CT, Bostwick J, Daniel S, Steen P (2015) Dynamics of sessile drops. Part 2. Experiment. J Fluid Mech 768:442–467

    Article  Google Scholar 

  37. Kreyszig E (1991) Differential geometry. Dover, Mineola

    MATH  Google Scholar 

  38. Walter J (1973) Regular eigenvalue problems with eigenvalue parameter in the boundary condition. Math Z 133(4):301–312

    Article  MathSciNet  MATH  Google Scholar 

  39. Kopachevskii N (1972) Hydrodynamics in weak gravitational fields two-dimensional oscillations of an ideal fluid in a rectangular channel. Fluid Dyn 7:705–714

    Article  Google Scholar 

  40. Lyubimov DV, Lyubimova TP, Shklyaev SV (2006) Behavior of a drop on an oscillating solid plate. Phys Fluids 18(1):012101

    Article  MathSciNet  MATH  Google Scholar 

  41. Ludwicki JM, Robinson FL, Steen PH (2020) Switchable wettability for condensation heat transfer. ACS Appl Mater Interfaces 12(19):22115–22119

    Article  Google Scholar 

  42. Davis CS, Crosby AJ (2011) Mechanics of wrinkled surface adhesion. Soft Matter 7(11):5373–5381

    Article  Google Scholar 

  43. Al Bitar L, Voigt D, Zebitz CP, Gorb SN (2010) Attachment ability of the codling moth Cydia pomonella L. to rough substrates. J Insect Physiol 56(12):1966–1972

    Article  Google Scholar 

  44. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405(6787):681–685

    Article  Google Scholar 

  45. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    Article  Google Scholar 

  46. Manakasettharn S, Ashley Taylor J, Krupenkin TN (2011) Bio-inspired artificial iridophores based on capillary origami: fabrication and device characterization. Appl Phys Lett 99(14):97–100

    Article  Google Scholar 

  47. Castrejón-Pita JR, Baxter WR, Morgan J, Temple S, Martin GD, Hutchings IM (2013) Future, opportunities and challenges of inkjet technologies. At Sprays 23(6):571–595

    Google Scholar 

  48. Fontelos M, Kindelan U (2008) The shape of charged drops over a solid surface and symmetry-breaking instabilities. SIAM J Appl Math 69(1):126–148

    Article  MathSciNet  MATH  Google Scholar 

  49. Krupenkin T, Taylor JA (2011) Reverse electrowetting as a new approach to high-power energy harvesting. Nat Commun 2(1):1–8

    Article  Google Scholar 

Download references

Acknowledgements

Professor Paul Steen passed away before this work was completed. The co-authors wish to acknowledge the invaluable contribution of Paul both to this work, as well as numerous other important problems in fluid mechanics. Paul was a brilliant scientist, who was equally creative and rigorous, and will be greatly missed by his friends, colleagues, and the fluid mechanics community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua McCraney.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. McCraney and P. Steen acknowledge support from NASA Grant NNH17ZTT001N-17PSI D. J. Bostwick acknowledges support from NSF Grants CMMI-1935590.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCraney, J., Bostwick, J. & Steen, P. Resonant mode scanning to compute the spectrum of capillary surfaces with dynamic wetting effects. J Eng Math 129, 10 (2021). https://doi.org/10.1007/s10665-021-10150-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10150-2

Keywords

Navigation