Skip to main content
Log in

Crystallization, rheological and mechanical properties of poly(butylene succinate)/poly(propylene carbonate)/poly(vinyl acetate) ternary blends

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Herein, a ternary blend from poly(butylene succinate) (PBS), poly(propylene carbonate) (PPC), and poly(vinyl acetate) (PVAc) with improved crystallization rate, stiffness, and toughness was initially prepared via melt compounded. The influence of PVAc content on morphology, miscibility, thermal behavior, and rheological and mechanical properties was investigated. Scanning electron microscopy observation showed phase morphology of PBS/PPC/PVAc ternary blends evolved from sea-island dispersion to co-continuous structure. Dynamic mechanical analysis revealed that PBS and PPC were immiscible. The presence of PPC inhibited the crystallization of PBS, while simultaneous incorporation of PVAc and PPC promoted the crystallization. Furthermore, the introduction of PPC and PVAc enhanced the rheological properties of PBS. Unexpectedly, prominent improvement in tensile modulus, yield strength, and elongation was obtained for the PBS/PPC/PVAc ternary blend with 10 wt% PVAc due to the morphological evolution from sea-island to co-continuous structure, which was respectively increased by 93%, 52%, and 26% compared with neat PBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li Y, Zhao L, Han C, Yu Y (2020) Biodegradable blends of poly(butylene adipate-co-terephthalate) and stereocomplex polylactide with enhanced rheological, mechanical properties and thermal resistance. Colloid Polym Sci 298:463–475

    Article  CAS  Google Scholar 

  2. Wang P, Tian Y, Wang G, Xu Y, Yang B, Lu B, Zhang W, Ji J (2015) Surface interaction induced transcrystallization in biodegradable poly(butylene succinate)-fibre composites. Colloid Polym Sci 293:2701–2707

    Article  CAS  Google Scholar 

  3. Du X, Wang Y, Huang W, Yang J, Wang Y (2015) Rheology and non-isothermal crystallization behaviors of poly(butylene succinate)/graphene oxide composites. Colloid Polym Sci 293:389–400

    Article  CAS  Google Scholar 

  4. Santagata G, Valerio F, Cimmino A, Poggetto GD, Masi M, Biase MD, Malinconico M, Lavermicocca P, Evidente A (2017) Chemico-physical and antifungal properties of poly(butylene succinate)/cavoxin blend: study of a novel bioactive polymeric based system. Eur Polym J 94:230–247

    Article  CAS  Google Scholar 

  5. Xu J, Guo BH (2010) Poly (butylene succinate) and its copolymers: research, development and industrialization. Biotechnol J 5:1149–1163

    Article  CAS  Google Scholar 

  6. Liang Z, Pan P, Zhu B, Dong T, Inoue Y (2010) Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci 115:3559–3567

    Article  CAS  Google Scholar 

  7. Langanke J, Wolf A, Hofmann J, Bohm K, Subhani MA, Müller TE, Leitner W, Gürtler C (2014) Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem 16:1865–1870

    Article  CAS  Google Scholar 

  8. Muthuraj R, Mekonnen T (2018) Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: co-polymers and polymer blends. Polymer 145:348–373

    Article  CAS  Google Scholar 

  9. Wu D, Yuan L, Laredo E, Zhang M, Zhou W (2012) Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind Eng Chem Res 51:2290–2298

    Article  CAS  Google Scholar 

  10. Deng Y, Thomas NL (2015) Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects. Eur Polym J 71:534–546

    Article  CAS  Google Scholar 

  11. Monika MN, Katiyar V (2019) Generalized kinetics for thermal degradation and melt rheology for poly (lactic acid)/poly (butylene succinate)/functionalized chitosan based reactive nanobiocomposite. Int J Biol Macromol 141:831–842

    Article  CAS  Google Scholar 

  12. Chen S, Ma C, Zhang G (2016) Biodegradable polymers for marine antibiofouling: poly(ε-caprolactone)/poly(butylene succinate) blend as controlled release system of organic antifoulant. Polymer 90:215–221

    Article  CAS  Google Scholar 

  13. Qiu Z, Komura M, Ikehara T, Nish T (2003) Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(butylene succinate) and poly(ε-caprolactone). Polymer 44:7749–7756

    Article  CAS  Google Scholar 

  14. Hexig B, Alata H, Asakawa N, Inoue Y (2021) Novel biodegradable poly(butylene succinate)/poly(ethylene oxide) blend film with compositional and spherulite-size gradients. J Polym Sci Pol Phys 43:368–377

    Article  Google Scholar 

  15. Qiu Z, Ikehara T, Nishi T (2003) Miscibility and crystallization in crystalline-crystalline blends of poly(butylene succinate)/poly-(ethylene oxide). Polymer 44:2799–2806

    Article  CAS  Google Scholar 

  16. Qiu Z, Ikehara T, Nishi T (2003) Poly(hydroxybutyrate)/poly(butylene succinate) blends: miscibility and nonisothermal crystallization. Polymer 44:2503–2508

    Article  CAS  Google Scholar 

  17. Qiu Z, Yang W (2006) Crystallization kinetics and morphology of poly(butylene succinate)/poly(vinyl phenol) blend. Polymer 47:6429–6437

    Article  CAS  Google Scholar 

  18. Zhang H, Sun X, Chen Q, Ren M, Zhang Z, Zhang H, Mo Z (2007) Miscibility, crystallization and mechanical properties of PPC/PBS blends. Chinese J Polym Sci 25:589–597

    Article  Google Scholar 

  19. Pang M, Qiao J, Jiao J, Wang S, Xiao M, Meng Y (2008) Miscibility and properties of completely biodegradable blends of poly(propylene carbonate) and poly(butylene succinate). J Appl Polym Sci 107:2854–2860

    Article  CAS  Google Scholar 

  20. Calderón BA, McCaughey MS, Thompson CW, Sobkowicz MJ (2019) Blends of renewable poly(butylene succinate) and poly(propylene carbonate) compatibilized with maleic anhydride using quad screw reactive extrusion. Ind Eng Chem Res 58:487–495

    Article  Google Scholar 

  21. Li Y, Lei Y, Yao S, Han C, Yu Y, Xiao L (2020) Miscibility, crystallization, rheological and mechanical properties of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/poly(vinyl acetate) blends. Thermochim Acta 693:178755

  22. Huang T, Yang J, Zhang N, Zhang J, Wang Y (2018) Crystallization of poly(L-lactide) in the miscible poly(L-lactide)/poly(vinyl acetate) blend induced by carbon nanotubes. Polym Bull 75:2641–2655

    Article  CAS  Google Scholar 

  23. Sivalingam G, Karthik R, Madras G (2004) Blends of poly(ε-caprolactone) and poly(vinyl acetate): mechanical properties and thermal degradation. Polym Degrad Stabil 84:345–351

    Article  CAS  Google Scholar 

  24. Shafee EE (2001) Investigation of the phase structure of poly(3-hydroxybutyrate)/poly(vinyl acetate) blends by dielectric relaxation spectroscopy. Eur Polym J 37:451–458

    Article  CAS  Google Scholar 

  25. Li Y, Han C, Xiao L, Yu Y, Zhou G, Xu M (2021) Miscibility, morphology, and properties of poly(butylene succinate)/poly(vinyl acetate) blends. Colloid Polym Sci 299:105–116

    Article  CAS  Google Scholar 

  26. Shi K, Liu Y, Hu X, Su T, Li P, Wang Z (2018) Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. Int J Biol Macromol 114:373–380

    Article  CAS  Google Scholar 

  27. Sundararaj U, Macosko CW (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28:2647–2657

    Article  CAS  Google Scholar 

  28. Han L, Han C, Zhang H, Chen S, Dong L (2012) Morphology and properties of biodegradable and biosourced polylactide blends with poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Composite 33:850–859

    Article  CAS  Google Scholar 

  29. Shibata M, Teramoto N, Inoue Y (2007) Mechanical properties, morphologies, and crystallization behavior of plasticized poly(L-lactide)/poly(butylene succinate-co-L-lactate) blends. Polymer 48:2768–2777

    Article  CAS  Google Scholar 

  30. Kumar M, Mohanty S, Nayak SK, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101:8406–8415

    Article  CAS  Google Scholar 

  31. Sakai F, Nishikawa K, Inoue Y, Yazawa K (2009) Nucleation enhancement effect in poly(L-lactide) (PLLA)/poly(ε-caprolactone) (PCL) blend induced by locally activated chain mobility resulting from limited miscibility. Macromolecules 42:8335–8342

    Article  CAS  Google Scholar 

  32. Kajiyama T, Tanaka K, Takahara A (1997) Surface molecular motion of the monodisperse polystyrene films. Macromolecules 30:280–285

    Article  CAS  Google Scholar 

  33. Thirtha V, Lehman R, Nosker T (2006) Morphological effects on glass transition behavior in selected immiscible blends of amorphous and semicrystalline polymers. Polymer 47:5392–5401

    Article  CAS  Google Scholar 

  34. Wei X, Bao R, Cao Z, Zhang L, Liu Z, Yang W, Xue B, Yang M (2014) Greatly accelerated crystallization of poly(lactic acid): cooperative effect of stereocomplex crystallites and polyethylene glycol. Colloid Polym Sci 92:163–172

    Article  Google Scholar 

  35. Mazidi MM, Edalat A, Berahman R, Hosseini FS (2018) Highly-toughened polylactide-(PLA-) based ternary blends with significantly enhanced glass transition and melt strength: tailoring the interfacial interactions, phase morphology, and performance. Macromolecules 51:4298–4314

    Article  Google Scholar 

  36. Tian J, Yu W, Zhou C (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969

    Article  CAS  Google Scholar 

  37. Hao X, Kaschta J, Liu X, Pan Y, Schubert DW (2015) Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends. Polymer 80:38–45

    Article  CAS  Google Scholar 

  38. Han CD, Kim J, Kim JK (1989) Determination of the order-disorder transition temperature of block copolymers. Macromolecules 22:383–394

    Article  CAS  Google Scholar 

  39. Veenstra H, Verkooijen PCJ, van Lent BJJ, van Dam J, de Boer AP, Nijhof APHJ (2000) On the mechanical properties of co-continuous polymer blends: experimental and modeling. Polymer 41:1817–1826

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Chinese Academy of Science and Technology Service Network Planning (KFJ-STS-QYZD-140), a program of Cooperation of Hubei Province and Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yancun Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Yu, Y. & Li, Y. Crystallization, rheological and mechanical properties of poly(butylene succinate)/poly(propylene carbonate)/poly(vinyl acetate) ternary blends. Colloid Polym Sci 299, 1447–1458 (2021). https://doi.org/10.1007/s00396-021-04869-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04869-8

Keywords

Navigation