Skip to main content
Log in

Synthesis of Acyclic Geminal Bis-peroxides

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The review covers the state of the art in methods of synthesis of acyclic geminal bis-peroxides, including bis-hydroperoxides, bis(1-hydroperoxyalkyl) peroxides, and 1-hydroperoxyalkyl 1-hydroxyalkyl peroxides. Most attention has been paid to the literature since 2000. This period of time is characterized by studies of mechanisms of formation of peroxides and hence by the development of effective and scalable procedures for the synthesis of acyclic geminal bis-peroxides via reactions of carbonyl compounds, ketals, and enol ethers with hydrogen peroxide and hydroperoxides in media that are uncommon for this field of chemistry. These procedures made it possible to extend the scope of application of acyclic geminal bis-peroxides in materials chemistry as initiators of radical polymerization and cross-linking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Zhou, W.-S. and Xu, X.-X., Acc. Chem. Res., 1994, vol. 27, p. 211. https://doi.org/10.1021/ar00043a005

    Article  CAS  Google Scholar 

  2. White, N.J., Science, 2008, vol. 320, p. 330. https://doi.org/10.1126/science.1155165

    Article  CAS  PubMed  Google Scholar 

  3. Haynes, R.K. and Vonwiller, S.C., Acc. Chem. Res., 1997, vol. 30, p. 73. https://doi.org/10.1021/ar950058w

    Article  CAS  Google Scholar 

  4. Kumar, V., Mahajan, A., and Chibale, K., Bioorg. Med. Chem., 2009, vol. 17, p. 2236. https://doi.org/10.1016/j.bmc.2008.10.072

    Article  CAS  PubMed  Google Scholar 

  5. Meshnick, S.R., Jefford, C.W., Posner, G.H., Avery, M.A., and Peters, W., Parasitol. Today, 1996, vol. 12, p. 79. https://doi.org/10.1016/0169-4758(96)80660-0

    Article  CAS  PubMed  Google Scholar 

  6. Vil’, V.A., Yaremenko, I.A., Ilovaisky, A.I., and Terent’ev, A.O., Molecules, 2017, vol. 22, p. 117. https://doi.org/10.3390/molecules22010117

    Article  CAS  PubMed Central  Google Scholar 

  7. Tang, Y., Dong, Y., and Vennerstrom, J.L., Med. Res. Rev., 2004, vol. 24, p. 425. https://doi.org/10.1002/med.10066

    Article  CAS  PubMed  Google Scholar 

  8. Jefford, C.W., Drug Discovery Today, 2007, vol. 12, p. 487. https://doi.org/10.1016/j.drudis.2007.04.009

    Article  CAS  PubMed  Google Scholar 

  9. Opsenica, D.M. and Šolaja, B.A., J. Serb. Chem. Soc., 2009, vol. 74, p. 1155. https://doi.org/10.2298/JSC0911155O

    Article  CAS  Google Scholar 

  10. Dembitsky, V.M., Eur. J. Med. Chem., 2008, vol. 43, p. 223. https://doi.org/10.1016/j.ejmech.2007.04.019

    Article  CAS  PubMed  Google Scholar 

  11. Chaturvedi, D., Goswami, A., Pratim Saikia, P., Barua, N.C., and Rao, P.G., Chem. Soc. Rev., 2010, vol. 39, p. 435. https://doi.org/10.1039/B816679J

    Article  CAS  PubMed  Google Scholar 

  12. Liu, D.-Z. and Liu, J.-K., Nat. Prod. Bioprospect., 2013, vol. 3, p. 161. https://doi.org/10.1007/s13659-013-0042-7

    Article  CAS  PubMed Central  Google Scholar 

  13. Yaremenko, I.A., Coghi, P., Prommana, P., Qiu, C., Radulov, P.S., Qu, Y., Belyakova, Y.Y., Zanforlin, E., Kokorekin, V.A., Wu, Y.Y.J., Fleury, F., Uthaipibull, C., Wong, V.K.W., and Terent’ev, A.O., ChemMedChem, 2020, vol. 15, p. 1118. https://doi.org/10.1002/cmdc.202000042

    Article  CAS  PubMed  Google Scholar 

  14. Vil’, V.A., Yaremenko, I.A., Fomenkov, D.I., Levitsky, D.O., Fleury, F., and Terent’ev, A.O., Chem. Heterocycl. Compd., 2020, vol. 56, p. 722. https://doi.org/10.1007/s10593-020-02722-4

    Article  CAS  Google Scholar 

  15. Coghi, P., Yaremenko, I.A., Prommana, P., Radulov, P.S., Syroeshkin, M.A., Wu, Y.J., Gao, J.Y., Gordillo, F.M., Mok, S., Wong, V.K.W., Uthaipibull, C., and Terent’ev, A.O., ChemMedChem, 2018, vol. 13, p. 902. https://doi.org/10.1002/cmdc.201700804

    Article  CAS  PubMed  Google Scholar 

  16. Yaremenko, I.A., Syroeshkin, M.A., Levitsky, D.O., Fleury, F., and Terent’ev, A.O., Med. Chem. Res., 2017, vol. 26, p. 170. https://doi.org/10.1007/s00044-016-1736-2

    Article  CAS  Google Scholar 

  17. Keiser, J. and Utzinger, J., Trends Parasitol., 2007, vol. 23, p. 555. https://doi.org/10.1016/j.pt.2007.07.012

    Article  CAS  PubMed  Google Scholar 

  18. Muraleedharan, K.M. and Avery, M.A., Drug Discovery Today, 2009, vol. 14, p. 793. https://doi.org/10.1016/j.drudis.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  19. Panic, G., Duthaler, U., Speich, B., and Keiser, J., Int. J. Parasitol.: Drugs Drug Resist., 2014, vol. 4, p. 185. https://doi.org/10.1016/j.ijpddr.2014.07.002

    Article  Google Scholar 

  20. Cowan, N., Yaremenko, I.A., Krylov, I.B., Terent’ev, A.O., and Keiser, J., Bioorg. Med. Chem., 2015, vol. 23, p. 5175. https://doi.org/10.1016/j.bmc.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  21. Ingram, K., Yaremenko, I.A., Krylov, I.B., Hofer, L., Terent’ev, A.O., and Keiser, J., J. Med. Chem., 2012, vol. 55, p. 8700. https://doi.org/10.1021/jm3009184

    Article  CAS  PubMed  Google Scholar 

  22. Efferth, T., Marschall, M., Wang, X., Huong, S.-M., Hauber, I., Olbrich, A., Kronschnabl, M., Stamminger, T., and Huang, E.-S., J. Mol. Med., 2002, vol. 80, p. 233. https://doi.org/10.1007/s00109-001-0300-8

    Article  CAS  PubMed  Google Scholar 

  23. Efferth, T., Romero, M.R., Wolf, D.G., Stamminger, T., Marin, J.J.G., and Marschall, M., Clin. Infect. Dis., 2008, vol. 47, p. 804. https://doi.org/10.1086/591195

    Article  CAS  PubMed  Google Scholar 

  24. Jia, M., Zhao, R., Xu, B., Yan, W., Chu, F., Gu, H., Xie, T., Xiang, H., Ren, J., Chen, D., Wang, P., and Lei, H., MedChemComm., 2017, vol. 8, p. 148. https://doi.org/10.1039/C6MD00344C

    Article  CAS  PubMed  Google Scholar 

  25. Vil’, A.V., Yaremenko, A.I., Ilovaisky, I.A., and Terent’ev, O.A., Molecules, 2017, vol. 22, article no. 1881. https://doi.org/10.3390/molecules22111881

  26. Yaremenko, I.A., Radulov, P.S., Belyakova, Y.Y., Demina, A.A., Fomenkov, D.I., Barsukov, D.V., Subbotina, I.R., Fleury, F., and Terent’ev, A.O., Chem. Eur. J., 2020, vol. 26, p. 4734. https://doi.org/10.1002/chem.201904555

    Article  CAS  PubMed  Google Scholar 

  27. Yaremenko, I.A., Syromyatnikov, M.Y., Radulov, P.S., Belyakova, Y.Y., Fomenkov, D.I., Popov, V.N., and Terent’ev, A.O., Molecules, 2020, vol. 25, article no. 1954. https://doi.org/10.3390/molecules25081954

  28. Kitis, M., Environ. Int., 2004, vol. 30, p. 47. https://doi.org/10.1016/S0160-4120(03)00147-8

    Article  CAS  PubMed  Google Scholar 

  29. Chassot, A.L.C., Poisl, M.I.P., and Samuel, S.M.W., Braz. Dent. J., 2006, vol. 17, p. 117. https://doi.org/10.1590/S0103-64402006000200006

    Article  PubMed  Google Scholar 

  30. Baldry, M.G.C. and French, M.S., Water Sci. Technol., 1989, vol. 21, p. 203. https://doi.org/10.2166/wst.1989.0100

    Article  CAS  Google Scholar 

  31. Alvaro, J.E., Moreno, S., Dianez, F., Santos, M., Carrasco, G., and Urrestarazu, M., J. Food Eng., 2009, vol. 95, p. 11. https://doi.org/10.1016/j.jfoodeng.2009.05.003

    Article  CAS  Google Scholar 

  32. Luukkonen, T. and Pehkonen, S.O., Crit. Rev. Environ. Sci. Technol., 2017, vol. 47, p. 1. https://doi.org/10.1080/10643389.2016.1272343

    Article  CAS  Google Scholar 

  33. Tropina, V.I., Krivykh, O.V., Sadchikova, N.P., Terent’ev, A.O., and Krylov, I.B., Pharm. Chem. J., 2010, vol. 44, p. 248. https://doi.org/10.1007/s11094-010-0441-6

    Article  CAS  Google Scholar 

  34. Wu, X.-F., Gong, J.-L., and Qi, X., Org. Biomol. Chem., 2014, vol. 12, p. 5807. https://doi.org/10.1039/C4OB00276H

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt, R.J., Appl. Catal., A, 2005, vol. 280, p. 89. https://doi.org/10.1016/j.apcata.2004.08.030

    Article  CAS  Google Scholar 

  36. Zhu, Y., Wang, Q., Cornwall, R.G., and Shi, Y., Chem. Rev., 2014, vol. 114, p. 8199. https://doi.org/10.1021/cr500064w

    Article  CAS  PubMed  Google Scholar 

  37. Fisher, T.J. and Dussault, P.H., Tetrahedron, 2017, vol. 73, p. 4233. https://doi.org/10.1016/j.tet.2017.03.039

    Article  CAS  Google Scholar 

  38. Vil’, V.A., Gorlov, E.S., Bityukov, O.V., Barsegyan, Y.A., Romanova, Y.E., Merkulova, V.M., and Terent’ev, A.O., Adv. Synth. Catal., 2019, vol. 361, p. 3173. https://doi.org/10.1002/adsc.201900271

    Article  CAS  Google Scholar 

  39. Barsegyan, Y.A. and Vil’, V.A., Chem. Heterocycl. Compd., 2019, vol. 55, p. 1035. https://doi.org/10.1007/s10593-019-02572-9

    Article  CAS  Google Scholar 

  40. Gaylord, N.G., Mandal, B.M., and Martan, M., J. Polym. Sci., Polym. Lett. Ed., 1976, vol. 14, p. 555. https://doi.org/10.1002/pol.1976.130140908

    Article  CAS  Google Scholar 

  41. Emami, S.H., Salovey, R., and Hogen-Esch, T.E., J. Polym. Sci., Part A: Polym. Chem., 2002, vol. 40, p. 3021. https://doi.org/10.1002/pola.10367

    Article  CAS  Google Scholar 

  42. Russell, K.E., Prog. Polym. Sci., 2002, vol. 27, p. 1007. https://doi.org/10.1016/S0079-6700(02)00007-2

    Article  CAS  Google Scholar 

  43. Islamova, R.M., Ishkinina, O.I., Nazarova, S.V., Chupakhin, O.N., Utepova, I.A., Andriyashina, N.M., and Terent’ev, A.O., Russ. Chem. Bull., Int. Ed., 2013, vol. 62, p. 1282. https://doi.org/10.1007/s11172-013-0177-z

    Article  CAS  Google Scholar 

  44. Klapötke, T.M. and Wloka, T., Patai’s Chemistry of Functional Groups, Hoboken: Wiley, 2009, p. 1. https://doi.org/10.1002/9780470682531.pat0879

  45. Flory, P.J., Principles of Polymer Chemistry, New York: Cornell Univ. Press, 1953.

  46. Antonovskii, V.L., Organicheskie perekisnye initsiatory (Organic Peroxide Initiators), Moscow: Khimiya, 1972.

  47. Antonovskii, V.L. and Khursan, S.L., Fizicheskaya khimiya organicheskikh peroksidov (Physical Chemistry of Organic Peroxides), Moscow: Akademkniga, 2003.

  48. Rakhimov, A.I., Khimiya i tekhnologiya organicheskikh perekisnykh soedinenii (Chemistry and Technology of Organic Peroxy Compounds), Moscow: Khimiya, 1979.

  49. Swern, D., Organic Peroxides, New York: Wiley, 1970.

  50. The Chemistry of Peroxides, Liebman, F., Greer, A., Rappoport, Z., Marek, I., and Patai, S., Eds., Hoboken: Wiley, 2015, vol. 3.

  51. Schulz, M., Peroxide Chemistry: Mechanistic and Preparative Aspects of Oxygen Transfer, Adam, W., Ed., Weinheim: Wiley-VCH, 2000, p. 1. https://doi.org/10.1002/3527600396.ch1

  52. Vil’, V.A., Gomes, G.d.P., Ekimova, M.V., Lyssenko, K.A., Syroeshkin, M.A., Nikishin, G.I., Alabugin, I.V., and Terent’ev, A.O., J. Org. Chem., 2018, vol. 83, p. 13427. https://doi.org/10.1021/acs.joc.8b02218

    Article  CAS  PubMed  Google Scholar 

  53. Denisov, E.T., Denisova, T.G., and Pokidova, T.S., Handbook of Free Radical Initiators, Hoboken: Wiley, 2005, p. 61. https://doi.org/10.1002/0471721476.ch4

  54. Denisov, E.T., Denisova, T.G., and Pokidova, T.S., Handbook of Free Radical Initiators, Hoboken: Wiley, 2005, p. 129. https://doi.org/10.1002/0471721476.ch5

  55. Sheppard, C.S. and Kamath, V.R., Polym. Eng. Sci., 1979, vol. 19, p. 597. https://doi.org/10.1002/pen.760190902

    Article  CAS  Google Scholar 

  56. Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, Mishra, M. and Yagci, Y., Eds., Boca Raton: CRC Press, 2016, 2nd ed.

  57. Terent’ev, A.O., Platonov, M.M., Tursina, A.I., Chernyshev, V.V., and Nikishin, G.I., J. Org. Chem., 2008, vol. 73, p. 3169. https://doi.org/10.1021/jo7027213

    Article  CAS  PubMed  Google Scholar 

  58. Luft, G., Bitsch, H., and Seidl, H., J. Macromol. Sci., Part A: Chem., 1977, vol. 11, p. 1089. https://doi.org/10.1080/00222337708061313

    Article  Google Scholar 

  59. Lowell, A.I. and Price, J.R., J. Polym. Sci., 1960, vol. 43, p. 1. https://doi.org/10.1002/pol.1960.1204314101

    Article  CAS  Google Scholar 

  60. Li, X., Koseki, H., Iwata, Y., and Mok, Y.-S., J. Loss Prev. Process Ind., 2004, vol. 17, p. 23. https://doi.org/10.1016/j.jlp.2003.08.003

    Article  CAS  Google Scholar 

  61. Peroxide Chemistry: Mechanistic and Preparative Aspects of Oxygen Transfer, Adam, W., Ed., Weinheim: Wiley-VCH, 2000. https://doi.org/10.1002/3527600396

  62. Schwartz C. and Dussault, P.H., Patai’s Chemistry of Functional Groups, Hoboken: Wiley, 2009, p. 1. https://doi.org/10.1002/9780470682531.pat0871

  63. van Tonder, J.H., Synlett, 2014, vol. 25, p. 1629. https://doi.org/10.1055/s-0034-1378210

    Article  CAS  Google Scholar 

  64. Kropf, H., Methoden der Organischen Chemie (Houben-Weyl), 1988.

  65. Zmitek, K., Zupan, M., and Iskra, J., Org. Biomol. Chem., 2007, vol. 5, p. 3895. https://doi.org/10.1039/B711647K

    Article  CAS  PubMed  Google Scholar 

  66. Gandhi, H., O’Reilly, K., Gupta, M.K., Horgan, C., O’Leary, E.M., and O’Sullivan, T.P., RSC Adv., 2017, vol. 7, p. 19506. https://doi.org/10.1039/C6RA28489B

    Article  CAS  Google Scholar 

  67. McCullough, K.J., Morgan, A.R., Nonhebel, D.C., Pauson, P.L., and White, G.J., J. Chem. Res., Miniprint, 1980, p. 601.

  68. Cubbon, R.C.P. and Hewlett, C., J. Chem. Soc. C, 1968, p. 2986. https://doi.org/10.1039/J39680002986

  69. Jefford, C.W., Li, Y., Jaber, A., and Boukouvalas, J., Synth. Commun., 1990, vol. 20, p. 2589. https://doi.org/10.1080/00397919008051466

    Article  CAS  Google Scholar 

  70. Li, Y., Hao, H.-D., Zhang, Q., and Wu, Y., Org. Lett., 2009, vol. 11, p. 1615. https://doi.org/10.1021/ol900262t

    Article  CAS  PubMed  Google Scholar 

  71. Terent’ev, A.O., Kutkin, A.V., Platonov, M.M., Ogibin, Y.N., and Nikishin, G.I., Tetrahedron Lett., 2003, vol. 44, p. 7359. https://doi.org/10.1016/S0040-4039(03)01844-6

    Article  CAS  Google Scholar 

  72. Terent’ev, A.O., Kutkin, A.V., Platonov, M.M., Vorontsov, I.I., Antipin, M.Y., Ogibin, Y.N., and Nikishin, G.I., Russ. Chem. Bull., Int. Ed., 2004, vol. 53, p. 681. https://doi.org/10.1023/B:RUCB.0000035657.58776.cc

    Article  Google Scholar 

  73. Wittig, G. and Pieper, G., Ber. Dtsch. Chem. Ges., 1940, vol. 73, p. 295. https://doi.org/10.1002/cber.19400730402

    Article  Google Scholar 

  74. Criegee, R., Schnorrenberg, W., and Becke, J., Justus Liebigs Ann. Chem., 1949, vol. 565, p. 7. https://doi.org/10.1002/jlac.19495650103

    Article  CAS  Google Scholar 

  75. Criegee, R., Pilz, H., and Flygare, H., Ber. Dtsch. Chem. Ges., 1939, vol. 72, p. 1799. https://doi.org/10.1002/cber.19390720926

    Article  Google Scholar 

  76. Criegee, R. and Dietrich, H., Justus Liebigs Ann. Chem., 1948, vol. 560, p. 135. https://doi.org/10.1002/jlac.19485600107

    Article  CAS  Google Scholar 

  77. Wooding, N.S., Higginson, W.C.E., Cooper, W., Davison, W.H.T., Cocker, W., Cross, B.E., McCormick, J., Pelletier, S.W., Josey, A.D., Bauer, L., Baxter, J.N., Cymerman, J., Sheldon, W.J., Dawson, J.K., Astell-Burt, A., Hammick, D.L., Curtis, R.G., Silberman, H., and Bryan, J.D., J. Chem. Soc., 1952, p. 1178. https://doi.org/10.1039/JR9520001178

  78. Kharasch, M.S. and Sosnovsky, G., J. Org. Chem., 1958, vol. 23, p. 1322. https://doi.org/10.1021/jo01103a021

    Article  CAS  Google Scholar 

  79. Brown, N., Hartig, M.J., Roedel, M.J., Anderson, A.W., and Schweitzer, C.E., J. Am. Chem. Soc., 1955, vol. 77, p. 1756. https://doi.org/10.1021/ja01612a010

    Article  CAS  Google Scholar 

  80. Zorn, H., Till, H., and Mitterhofer, F., Monatsh Chem., 1965, vol. 96, p. 430. https://doi.org/10.1007/BF00909451

    Article  CAS  Google Scholar 

  81. Milas, N.A. and Belič, I., J. Am. Chem. Soc., 1959, vol. 81, p. 3358. https://doi.org/10.1021/ja01522a050

    Article  CAS  Google Scholar 

  82. Warnant, J., Jofy, R., Muthieu, J., and Velluz, L., Bull. Soc. Chim. Fr., 1957, p. 331.

  83. Velluz, L., Amiard, G., Martel, J., and Warnant, J., Bull. Soc. Chim. Fr., 1957, p. 879.

  84. Cosijn, A.H.M. and Ossewold, M.G.J., Recl. Trav. Chim. Pays–Bas, 1968, vol. 87, p. 1264. https://doi.org/10.1002/recl.19680871108

    Article  CAS  Google Scholar 

  85. Milas, N.A. and Golubović, A., J. Am. Chem. Soc., 1959, vol. 81, p. 6461. https://doi.org/10.1021/ja01533a033

    Article  CAS  Google Scholar 

  86. Milas, N.A. and Golubović, A., J. Am. Chem. Soc., 1959, vol. 81, p. 5824. https://doi.org/10.1021/ja01530a068

    Article  CAS  Google Scholar 

  87. Ferrari, C.G. and Kazuo, H., US Patent no. 3047406A, 1962.

  88. Groth, P., Acta Chem. Scand., Ser. A, 1975, vol. 29, p. 840. https://doi.org/10.3891/acta.chem.scand.29a-0840

    Article  Google Scholar 

  89. Kim, H.-S., Nagai, Y., Ono, K., Begum, K., Wataya, Y., Hamada, Y., Tsuchiya, K., Masuyama, A., Nojima, M., and McCullough, K.J., J. Med. Chem., 2001, vol. 44, p. 2357. https://doi.org/10.1021/jm010026g

    Article  CAS  PubMed  Google Scholar 

  90. Ledaal, T.S.T., Acta Chem. Scand., 1967, vol. 21, p. 1658. https://doi.org/10.3891/acta.chem.scand.21-1658

    Article  CAS  Google Scholar 

  91. Dåshes, T.L.T., Acta Chem. Scand., 1971, vol. 25, p. 1906. https://doi.org/10.3891/acta.chem.scand.25-1906

    Article  Google Scholar 

  92. Ramirez, A. and Woerpel, K.A., Org. Lett., 2005, vol. 7, p. 4617. https://doi.org/10.1021/ol051703u

    Article  CAS  PubMed  Google Scholar 

  93. Nagahama, S., Kobayashi, H., and Akiyoshi, S., Bull. Chem. Soc. Jpn., 1959, vol. 32, p. 366. https://doi.org/10.1246/bcsj.32.366

    Article  CAS  Google Scholar 

  94. Terent’ev, A.O., Platonov, M.M., Ogibin, Y.N., and Nikishin, G.I., Synth. Commun., 2007, vol. 37, p. 1281. https://doi.org/10.1080/00397910701226384

    Article  CAS  Google Scholar 

  95. Todorović, N.M., Stefanovic, M., Tinant, B., Declercq, J.-P., Makler, M.T., and S̆olaja, B.A., Steroids, 1996, vol. 61, p. 688. https://doi.org/10.1016/S0039-128X(96)00203-6

    Article  PubMed  Google Scholar 

  96. Šolaja, B.A., Terzić, N., Pocsfalvi, G., Gerena, L., Tinant, B., Opsenica, D., and Milhous, W.K., J. Med. Chem., 2002, vol. 45, p. 3331. https://doi.org/10.1021/jm020891g

    Article  CAS  PubMed  Google Scholar 

  97. Kumawat, M.K., Parida, P., and Chetia, D., Med. Chem. Res., 2016, vol. 25, p. 1993. https://doi.org/10.1007/s00044-016-1644-5

    Article  CAS  Google Scholar 

  98. Khosravi, K., Pirbodaghi, F., Kazemi, S., and Asgari, A., J. Iran. Chem. Soc., 2015, vol. 12, p. 1333. https://doi.org/10.1007/s13738-015-0598-8

    Article  CAS  Google Scholar 

  99. Bunge, A., Hamann, H.-J., and Liebscher, J., Tetrahedron Lett., 2009, vol. 50, p. 524. https://doi.org/10.1016/j.tetlet.2008.11.055

    Article  CAS  Google Scholar 

  100. Terent’ev, A.O., Platonov, M.M., Kashin, A.S., and Nikishin, G.I., Tetrahedron, 2008, vol. 64, p. 7944. https://doi.org/10.1016/j.tet.2008.06.027

    Article  CAS  Google Scholar 

  101. Vil’, V.A., Gomes, G.d.P., Bityukov, O.V., Lyssenko, K.A., Nikishin, G.I., Alabugin, I.V., and Terent’ev, A.O., Angew. Chem., Int. Ed., 2018, vol. 57, p. 3372. https://doi.org/10.1002/anie.201712651

    Article  CAS  Google Scholar 

  102. Terent’ev, A., Platonov, M., and Kutkin, A., Open Chem., 2006, vol. 4, p. 207. https://doi.org/10.2478/s11532-006-0012-6

    Article  CAS  Google Scholar 

  103. Vil’, V.A., Barsegyan, Y.A., Kuhn, L., Ekimova, M.V., Semenov, E.A., Korlyukov, A.A., Terent’ev, A.O., and Alabugin, I.V., Chem. Sci., 2020, vol. 11, p. 5313. https://doi.org/10.1039/D0SC01025A

    Article  PubMed  PubMed Central  Google Scholar 

  104. Das, B., Veeranjaneyulu, B., Krishnaiah, M., and Balasubramanyam, P., J. Mol. Catal. A: Chem., 2008, vol. 284, p. 116. https://doi.org/10.1016/j.molcata.2008.01.016

    Article  CAS  Google Scholar 

  105. Azarifar, D., Najminejad, Z., and Khosravi, K., Synth. Commun., 2013, vol. 43, p. 826. https://doi.org/10.1080/00397911.2011.610549

    Article  CAS  Google Scholar 

  106. Surya Prakash, G.K., Shakhmin, A., Glinton, K.E., Rao, S., Mathew, T., and Olah, G.A., Green Chem., 2014, vol. 16, p. 3616. https://doi.org/10.1039/C4GC00586D

    Article  CAS  Google Scholar 

  107. Azarifar, D., Khosravi, K., and Soleimanei, F., Molecules, 2010, vol. 15, p. 1433. https://doi.org/10.3390/molecules15031433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yan, X., Chen, J., Zhu, Y.-T., and Qiao, C., Synlett, 2011, vol. 2011, p. 2827. https://doi.org/10.1055/s-0031-1289864

    Article  CAS  Google Scholar 

  109. Khosravi, K. and Kazemi, S., J. Chin. Chem. Soc., 2012, vol. 59, p. 641. https://doi.org/10.1002/jccs.201100605

    Article  CAS  Google Scholar 

  110. Iskra, J., Bonnet-Delpon, D., and Bégué, J.-P., Tetrahedron Lett., 2003, vol. 44, p. 6309. https://doi.org/10.1016/S0040-4039(03)01472-2

    Article  CAS  Google Scholar 

  111. Ghorai, P. and Dussault, P.H., Org. Lett., 2008, vol. 10, p. 4577. https://doi.org/10.1021/ol801859c

    Article  CAS  PubMed  Google Scholar 

  112. Hang, J., Ghorai, P., Finkenstaedt-Quinn, S.A., Findik, I., Sliz, E., Kuwata, K.T., and Dussault, P.H., J. Org. Chem., 2012, vol. 77, p. 1233. https://doi.org/10.1021/jo202265j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Azarifar, D., Khosravi, K., and Soleimanei, F., Synthesis, 2009, vol. 2009, p. 2553. https://doi.org/10.1055/s-0029-1217394

    Article  CAS  Google Scholar 

  114. Azarifar, D. and Khosravi, K., J. Iran. Chem. Soc., 2011, vol. 8, p. 1006. https://doi.org/10.1007/BF03246556

    Article  CAS  Google Scholar 

  115. Sashidhara, K.V., Avula, S.R., Ravithej Singh, L., and Palnati, G.R., Tetrahedron Lett., 2012, vol. 53, p. 4880. https://doi.org/10.1016/j.tetlet.2012.07.001

    Article  CAS  Google Scholar 

  116. Žmitek, K., Zupan, M., Stavber, S., and Iskra, J., Org. Lett., 2006, vol. 8, p. 2491. https://doi.org/10.1021/ol060590r

    Article  CAS  PubMed  Google Scholar 

  117. Žmitek, K., Zupan, M., Stavber, S., and Iskra, J., J. Org. Chem., 2007, vol. 72, p. 6534. https://doi.org/10.1021/jo0708745

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, Q., Li, Y., and Wu, Y.-K., Chin. J. Chem., 2007, vol. 25, p. 1304. https://doi.org/10.1002/cjoc.200790242

    Article  CAS  Google Scholar 

  119. Das, B., Krishnaiah, M., Veeranjaneyulu, B., and Ravikanth, B., Tetrahedron Lett., 2007, vol. 48, p. 6286. https://doi.org/10.1016/j.tetlet.2007.07.012

    Article  CAS  Google Scholar 

  120. Radulov, P.S. and Vil’, V.A., Chem. Heterocycl. Compd., 2020, vol. 56, p. 299. https://doi.org/10.1007/s10593-020-02657-w

    Article  CAS  Google Scholar 

  121. Khosravi, K., Zendehdel, M., Naserifar, S., Tavakoli, F., Khalaji, K., and Asgari, A., J. Chem. Res., 2016, vol. 40, p. 744. https://doi.org/10.3184/174751916X14792244600532

    Article  CAS  Google Scholar 

  122. Do, S.-H., Batchelor, B., Lee, H.-K., and Kong, S.-H., Chemosphere, 2009, vol. 75, p. 8. https://doi.org/10.1016/j.chemosphere.2008.11.075

    Article  CAS  PubMed  Google Scholar 

  123. Hasan, M.A., Zaki, M.I., Pasupulety, L., and Kumari, K., Appl. Catal., A, 1999, vol. 181, p. 171. https://doi.org/10.1016/S0926-860X(98)00430-X

    Article  CAS  Google Scholar 

  124. Yang, Y., Tseung, A.C.C., and Lin, Z.G., J. Electroanal. Chem., 1994, vol. 370, p. 159. https://doi.org/10.1016/0022-0728(94)03201-7

    Article  CAS  Google Scholar 

  125. Masuyama, A., Sugawara, T., Nojima, M., and McCullough, K.J., Tetrahedron, 2003, vol. 59, p. 353. https://doi.org/10.1016/S0040-4020(02)01522-3

    Article  CAS  Google Scholar 

  126. Lempers, H.E.B., Sheldon, R.A., and Swift, K.A.D., Chem. Lett., 2002, vol. 31, p. 830. https://doi.org/10.1246/cl.2002.830

    Article  Google Scholar 

  127. Ogibin, Y.N., Terent’ev, A.O., Ananikov, V.P., and Nikishin, G.I., Russ. Chem. Bull., Int. Ed., 2001, vol. 50, p. 2149. https://doi.org/10.1023/A:1015009603719

    Article  CAS  Google Scholar 

  128. Blank, O., Raschke, N., and Heinrich, M.R., Tetrahedron Lett., 2010, vol. 51, p. 1758. https://doi.org/10.1016/j.tetlet.2010.01.098

    Article  CAS  Google Scholar 

  129. Prechter, A. and Heinrich, M.R., Synthesis, 2011, vol. 2011, p. 1515. https://doi.org/10.1055/s-0030-1260006

    Article  CAS  Google Scholar 

  130. Ogibin, Y.N., Starostin, E.K., Aleksandrov, A.V., Pivnitsky, K.K., and Nikishin, G.I., Synthesis, 1994, vol. 1994, p. 901. https://doi.org/10.1055/s-1994-25596

    Article  Google Scholar 

  131. Liu, Y.-H., Deng, J., Gao, J.-W., and Zhang, Z.-H., Adv. Synth. Catal., 2012, vol. 354, p. 441. https://doi.org/10.1002/adsc.201100561

    Article  CAS  Google Scholar 

  132. Terent’ev, A.O., Khodykin, S.V., Krylov, I.B., Ogibin, Y.N., and Nikishin, G.I., Synthesis, 2006, vol. 2006, p. 1087. https://doi.org/10.1055/s-2006-926386

    Article  CAS  Google Scholar 

  133. Terent’ev, A.O., Borisov, D.A., Krylov, I.B., and Nikishin, G.I., Synth. Commun., 2007, vol. 37, p. 3151. https://doi.org/10.1080/00397910701545171

    Article  CAS  Google Scholar 

  134. Nikishin, G.I., Kapustina, N.I., Sokova, L.L., Bityukov, O.V., and Terent’ev, A.O., Tetrahedron Lett., 2020, vol. 61, article ID 152154. https://doi.org/10.1016/j.tetlet.2020.152154

  135. Pettinari, C., Marchetti, F., Cingolani, A., Drozdov, A., and Troyanov, S., Chem. Commun., 2000, p. 1901. https://doi.org/10.1039/B005221N

  136. Tada, N., Cui, L., Okubo, H., Miura, T., and Itoh, A., Adv. Synth. Catal., 2010, vol. 352, p. 2383. https://doi.org/10.1002/adsc.201000357

    Article  CAS  Google Scholar 

  137. Cui, L., Tada, N., Okubo, H., Miura, T., and Itoh, A., Green Chem., 2011, vol. 13, p. 2347. https://doi.org/10.1039/C1GC15437K

    Article  CAS  Google Scholar 

  138. Tada, N., Cui, L., Okubo, H., Miura, T., and Itoh, A., Chem. Commun., 2010, vol. 46, p. 1772. https://doi.org/10.1039/B917056A

    Article  CAS  Google Scholar 

  139. Starkl Renar, K., Pecar, S., and Iskra, J., Org. Biomol. Chem., 2015, vol. 13, p. 9369. https://doi.org/10.1039/C5OB01503K

    Article  CAS  PubMed  Google Scholar 

  140. Caglion, L., Gasparrini, F., Misiti, D., and Palmieri, G., Tetrahedron, 1978, vol. 34, p. 135. https://doi.org/10.1016/0040-4020(78)88048-X

    Article  Google Scholar 

  141. Hamann, H.-J. and Liebscher, J., J. Org. Chem., 2000, vol. 65, p. 1873. https://doi.org/10.1021/jo991457y

    Article  CAS  PubMed  Google Scholar 

  142. Hamann, H.-J., Bunge, A., and Liebscher, J., Chem. Eur. J., 2008, vol. 14, p. 6849. https://doi.org/10.1002/chem.200800932

    Article  CAS  PubMed  Google Scholar 

  143. Tsuchiya, K., Hamada, Y., Masuyama, A., Nojima, M., McCullough, K.J., Kim, H.-S., Shibata, Y., and Wataya, Y., Tetrahedron Lett., 1999, vol. 40, p. 4077. https://doi.org/10.1016/S0040-4039(99)00653-X

    Article  CAS  Google Scholar 

  144. Robertson, J.C. and Verzino, W.J., J. Org. Chem., 1970, vol. 35, p. 545. https://doi.org/10.1021/jo00827a068

    Article  CAS  Google Scholar 

  145. Razumovskii, S.D. and Zaikov, G.E., Ozon i ego reaktsii s organicheskimi soedineniyami (Ozon and Its Reactions with Organic Compounds), Moscow: Nauka, 1974.

  146. Bailey, P.S., Ozonation in Organic Chemistry, New York: Academic Press, 1978, vol. 1, p. 25.

  147. Emanuel’, N.M., Uspekhi khimii organicheskikh perekisnykh soedinenii i autookisleniya (Advances in the Chemistry of Organic Peroxy Compounds and Autooxidation), Moscow: Khimiya, 1969.

  148. Adam, W., Four-Membered Ring Peroxides: 1,2-Dioxetanes and α-Peroxylactones, Patai, S., Ed., Chichester: Wiley, 1983, p. 829. https://doi.org/10.1002/9780470771730.ch24

  149. Organic Peroxides, Ando, W., Ed., Chichester: Wiley, 1992.

  150. Maltha, P.R.A. and Tijssen, S.B., US Patent no. 3409600A, 1968.

  151. Matsuyama, K. and Kumura, H., J. Org. Chem., 1993, vol. 58, p. 1766. https://doi.org/10.1021/jo00059a029

    Article  CAS  Google Scholar 

  152. Yasushi, S., Yasumasa, W., Hiromi, K., Tomoyuki, N., Shuji, S., and Yasuhiko, S., Bull. Chem. Soc. Jpn., 1992, vol. 65, p. 664. https://doi.org/10.1246/bcsj.65.664

    Article  Google Scholar 

  153. Nwoko, D., Wells, M.O., and Bock, L.A., WO Patent Appl. Pub. no. 2003000655, 2003.

  154. Rieche, A., Bischoff, C., and Dietrich, P., Chem. Ber., 1961, vol. 94, p. 2932. https://doi.org/10.1002/cber.19610941115

    Article  CAS  Google Scholar 

  155. Nazarova, Z.F., Bocharova, Y.E., Batog, A.E., and Romantsevich, M.K., J. Org. Chem. USSR, 1966, vol. 2, p. 249.

    Google Scholar 

  156. Augusto, P., Giuliano, B., Carlo, B., Augusto, P.C., and Spartaco, F., US Patent no. 3296184A, 1967.

  157. Yurzhenko, T.I., Elagin, G.I., Karpenko, A.N., and Mamchur, L.P., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1970, vol. 13, p. 1457.

    CAS  Google Scholar 

  158. Schweitzer-Chaput, B., Boess, E., and Klussmann, M., Org. Lett., 2016, vol. 18, p. 4944. https://doi.org/10.1021/acs.orglett.6b02419

    Article  CAS  PubMed  Google Scholar 

  159. Oldekop, Y.A., Moiseichuk, K.L., Yuvchenko, A.P., and Isahanyan, A.L., Vestsi Akad. Navuk BSSR, Ser. Khim. Navuk, 1976, no. 2, p. 105.

    Google Scholar 

  160. Bloodworth, A.J. and Bunce, R.J., J. Organomet. Chem., 1973, vol. 60, p. 11. https://doi.org/10.1016/S0022-328X(00)85432-7

    Article  CAS  Google Scholar 

  161. Chapurkin, V.V. and Drevin, V.E., Russ. J. Org. Chem., 1999, vol. 35, p. 1551.

    CAS  Google Scholar 

  162. Sorokina, A.N., Batog, A.E., and Romantsevich, M.K., J. Org. Chem. USSR, 1967, vol. 3, p. 827.

    Google Scholar 

  163. Mashnenko, O.M., Sorokina, A.N., Batog, A.E., Mironenko, N.I., and Romancevich, M.K., Sov. Prog. Chem. (Engl. Transl.), 1971, vol. 37, p. 97.

    CAS  Google Scholar 

  164. Schulz, M. and Likowski, K., Z. Chem., 1980, vol. 20, p. 53. https://doi.org/10.1002/zfch.19800200205

    Article  CAS  Google Scholar 

  165. Wang, X., Pan, Y., Huang, K.-W., and Lai, Z., Org. Lett., 2015, vol. 17, p. 5630. https://doi.org/10.1021/acs.orglett.5b02881

    Article  CAS  PubMed  Google Scholar 

  166. Yuvchenko, A.P., Beresnevich, L.B., Zhukovskaya, N.A., Kozlov, N.G., Moiseichuk, K.L., and Oldekop, Y.A., J. Org. Chem. USSR, 1988, vol. 24, p. 1703.

    Google Scholar 

  167. Terent’ev, A.O., Kutkin, A.V., Troizky, N.A., Ogibin, Y.N., and Nikishin, G.I., Synthesis, 2005, vol. 2005, p. 2215. https://doi.org/10.1055/s-2005-872093

    Article  CAS  Google Scholar 

  168. Schweitzer-Chaput, B., Sud, A., Pintér, Á., Dehn, S., Schulze, P., and Klussmann, M., Angew. Chem., Int. Ed., 2013, vol. 52, p. 13228. https://doi.org/10.1002/anie.201306752

    Article  CAS  Google Scholar 

  169. Matsuyama, K., Sugiura, T., and Minoshima, Y., J. Org. Chem., 1995, vol. 60, p. 5520. https://doi.org/10.1021/jo00122a035

    Article  CAS  Google Scholar 

  170. Mukaiyama, T., Miyoshi, N., Kato, J.-I., and Ohshima, M., Chem. Lett., 1986, vol. 15, p. 1385. https://doi.org/10.1246/cl.1986.1385

    Article  Google Scholar 

  171. Buncel, E. and Davies, A.G., J. Chem. Soc., 1958, p. 1550. https://doi.org/10.1039/JR9580001550

  172. Dauben, J.H., Honnen, L., and Harmon, K., J. Org. Chem., 1960, vol. 25, p. 1442. https://doi.org/10.1021/jo01078a608

    Article  CAS  Google Scholar 

  173. Hamada, Y., Tokuhara, H., Masuyama, A., Nojima, M., Kim, H.-S., Ono, K., Ogura, N., and Wataya, Y., J. Med. Chem., 2002, vol. 45, p. 1374. https://doi.org/10.1021/jm010473w

    Article  CAS  PubMed  Google Scholar 

  174. McCullough, K.J., Ito, T., Tokuyasu, T., Masuyama, A., and Nojima, M., Tetrahedron Lett., 2001, vol. 42, p. 5529. https://doi.org/10.1016/S0040-4039(01)01015-2

    Article  CAS  Google Scholar 

  175. Kyasa, S., Puffer, B.W., and Dussault, P.H., J. Org. Chem., 2013, vol. 78, p. 3452. https://doi.org/10.1021/jo4001564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ito, T., Tokuyasu, T., Masuyama, A., Nojima, M., and McCullough, K.J., Tetrahedron, 2003, vol. 59, p. 525. https://doi.org/10.1016/S0040-4020(02)01556-9

    Article  CAS  Google Scholar 

  177. Ghorai, P. and Dussault, P.H., Org. Lett., 2009, vol. 11, p. 4572. https://doi.org/10.1021/ol9018216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Dussault, P.H., Lee, I.Q., Lee, H.-J., Lee, R.J., Niu, Q.J., Schultz, J.A., and Zope, U.R., J. Org. Chem., 2000, vol. 65, p. 8407. https://doi.org/10.1021/jo991714z

    Article  CAS  PubMed  Google Scholar 

  179. Milas, N.A. and Klein, R.J., J. Org. Chem., 1968, vol. 33, p. 848. https://doi.org/10.1021/jo01266a084

    Article  Google Scholar 

  180. Kropf, H., Bernert, C.R., and Dahlenburg, L., Tetrahedron, 1970, vol. 26, p. 3279. https://doi.org/10.1016/S0040-4020(01)92907-2

    Article  CAS  Google Scholar 

  181. Cardinale, G., Laan, J.A.M., and Ward, J.P., Tetrahedron, 1985, vol. 41, p. 2899. https://doi.org/10.1016/S0040-4020(01)96613-X

    Article  CAS  Google Scholar 

  182. Cooper, W. and Davison, W.H.T., J. Chem. Soc., 1952, p. 1180. https://doi.org/10.1039/JR9520001178

  183. Kerur, D.R. and Diaper, D.G.M., Can. J. Chem., 1973, vol. 51, p. 3110. https://doi.org/10.1139/v73-463

    Article  CAS  Google Scholar 

  184. Zang, N., Qian, X.-M., Liu, Z.-Y., and Shu, C.-M., J. Therm. Anal. Calorim., 2016, vol. 124, p. 1131. https://doi.org/10.1007/s10973-015-5209-5

    Article  CAS  Google Scholar 

  185. Lee, B., Story, P.R., and Sanderson, J.R., J. Org. Chem., 1976, vol. 41, p. 2314. https://doi.org/10.1021/jo00875a021

    Article  CAS  Google Scholar 

  186. Tyumkina, T.V., Makhmudiyarova, N.N., Kiyamutdinova, G.M., Meshcheryakova, E.S., Bikmukhametov, K.S., Abdullin, M.F., Khalilov, L.M., Ibragimov, A.G., and Dzhemilev, U.M., Tetrahedron, 2018, vol. 74, p. 1749. https://doi.org/10.1016/j.tet.2018.01.045

    Article  CAS  Google Scholar 

  187. Terent’ev, A.O., Platonov, M.M., Krylov, I.B., Chernyshev, V.V., and Nikishin, G.I., Org. Biomol. Chem., 2008, vol. 6, p. 4435. https://doi.org/10.1039/B809661A

    Article  PubMed  Google Scholar 

  188. Criegee, R. and Metz, K., Chem. Ber., 1956, vol. 89, p. 1714. https://doi.org/10.1002/cber.19560890720

    Article  CAS  Google Scholar 

  189. Bunge, A., Hamann, H.-J., Dietz, D., and Liebscher, J., Tetrahedron, 2013, vol. 69, p. 2446. https://doi.org/10.1016/j.tet.2013.01.032

    Article  CAS  Google Scholar 

  190. Bunge, A., Hamann, H.-J., McCalmont, E., and Liebscher, J., Tetrahedron Lett., 2009, vol. 50, p. 4629. https://doi.org/10.1016/j.tetlet.2009.05.096

    Article  CAS  Google Scholar 

  191. Milas, N.A. and Golubović, A., J. Am. Chem. Soc., 1959, vol. 81, p. 3361. https://doi.org/10.1021/ja01522a051

    Article  CAS  Google Scholar 

  192. Sanderson, J.R. and Zeiler, A.G., Synthesis, 1975, vol. 1975, p. 388. https://doi.org/10.1055/s-1975-23765

    Article  Google Scholar 

  193. Busch, P. and Story, P.R., Synthesis, 1970, vol. 1970, p. 181. https://doi.org/10.1055/s-1970-21592

    Article  Google Scholar 

  194. Terent’ev, A.O., Platonov, M.M., Sonneveld, E.J., Peschar, R., Chernyshev, V.V., Starikova, Z.A., and Nikishin, G.I., J. Org. Chem., 2007, vol. 72, p. 7237. https://doi.org/10.1021/jo071072c

    Article  CAS  PubMed  Google Scholar 

  195. Hawkins, E.G.E., J. Chem. Soc. C, 1969, p. 2671. https://doi.org/10.1039/J39690002671

  196. Franco, L.L., de Almeida, M.V., e Silva, L.F.R., Vieira, P.P.R., Pohlit, A.M., and Valle, M.S., Chem. Biol. Drug Des., 2012, vol. 79, p. 790. https://doi.org/10.1111/j.1747-0285.2012.01345.x

    Article  CAS  PubMed  Google Scholar 

  197. McCapra, F. and Leeson, P., J. Chem. Soc., Chem. Commun., 1976, p. 1037. https://doi.org/10.1039/C39760001037

  198. Paul, K., Story, P.R., Busch, P., and Sanderson, J.R., J. Org. Chem., 1976, vol. 41, p. 1283. https://doi.org/10.1021/jo00869a054

    Article  CAS  Google Scholar 

  199. Terent’ev, A.O., Kutkin, A.V., Platonov, M.M., Starikova, Z.A., Ogibin, Y.N. and Nikishina, G.I., Russ. Chem. Bull., Int. Ed., 2005, vol. 54, p. 1214. https://doi.org/10.1007/s11172-005-0383-4

    Article  CAS  Google Scholar 

  200. Arzumanyan, A.V., Terent’ev, A.O., Novikov, R.A., Lakhtin, V.G., Chernyshev, V.V., Fitch, A.N., and Nikishin, G.I., Eur. J. Org. Chem., 2014, vol. 2014, p. 6877. https://doi.org/10.1002/ejoc.201402895

    Article  CAS  Google Scholar 

  201. Belič, I., Kastelic-Suhadolc, T., Kavčič, R., Marsel, J., Kramer, V., and Kralj, B., Tetrahedron, 1976, vol. 32, p. 3045. https://doi.org/10.1016/0040-4020(76)80164-0

    Article  Google Scholar 

  202. Clover, A.M., J. Am. Chem. Soc., 1924, vol. 46, p. 419. https://doi.org/10.1021/ja01667a017

    Article  CAS  Google Scholar 

  203. Milas, N.A., Chem. Rev., 1932, vol. 10, p. 295. https://doi.org/10.1021/cr60036a002

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed under financial support by the Russian Science Foundation (project no. 21-43-04417).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Vil’ or A. O. Terent’ev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 6, pp. 757–787 https://doi.org/10.31857/S051474922106001X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bityukov, O.V., Vil’, V.A. & Terent’ev, A.O. Synthesis of Acyclic Geminal Bis-peroxides. Russ J Org Chem 57, 853–878 (2021). https://doi.org/10.1134/S1070428021060014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021060014

Keywords:

Navigation