Skip to main content
Log in

Synthesis, In Vitro α-Amylase Activity, and Molecular Docking Study of New Benzimidazole Derivatives

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

New benzimidazole derivatives were synthesized by reacting substituted phenacyl bromides with 1H-benzimidazole-2-thiols. The synthesized compounds were characterized through 1H and 13C NMR and high-resolution mass spectra. Their evaluation for α-amylase activity revealed inhibitory potential with IC50 values ranging from 1.20±0.05 to 19.10±0.30 μM against IC50 = 1.70±0.10 μM for the standard drug acarbose. Among the examined series, 2-[(1H-benzimidazole-2-yl)sulfanyl]-1-(3–nitrophenyl)ethan-1-one (IC50 = 1.20±0.05 µM) was the most potent. Other nitro-substituted analogs showed good potency with IC50 values of 2.10±0.10, 2.20±0.10 and 2.10±0.10 µM. Limited structure–activity relationship was established for all derivatives based on the nature, position, and number of substituents on the aryl ring. Binding sites of the most active compounds were determined by the molecular docking study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Barker, H.A., Smyth, R.D., Weissbach, H., Toohey, J.I., Ladd, J.N., and Volcani, B.E., J. Biol. Chem., 1960, vol. 235, p. 480. https://doi.org/10.1016/S0021-9258(18)69550-X

    Article  CAS  PubMed  Google Scholar 

  2. Orjales, A., Mosquera, R., Labeaga, L., and Rodes, R., J. Med. Chem., 1997, vol. 40, p. 586. https://doi.org/10.1021/jm960442e

    Article  CAS  PubMed  Google Scholar 

  3. Comprehensive Heterocyclic Chemistry: The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds, Katritzky, A.R. and Rees, C.W., Eds., Oxford: Pergamon, 1996.

  4. Wank, S.A., Am. J. Physiol.: Gastrointest. Liver Physiol., 1998, vol. 274, p. G607. https://doi.org/10.1152/ajpgi.1998.274.4.G607

  5. Islip, P.J., Closier, M.D., Neville, M.C., Werbel, L.M., and Capps, D.B., J. Med. Chem., 1972, vol. 15, p. 951. https://doi.org/10.1021/jm00279a019

    Article  CAS  PubMed  Google Scholar 

  6. Tiwaria, A.K., Mishrab, A.K., Bajpai, A., Mishra, P., Singh, S., Sinha, D., and Singh, V.K., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 2749. https://doi.org/10.1016/j.bmcl.2007.02.071

    Article  CAS  Google Scholar 

  7. Cole, E.R., Crank, G., and Salam-Sheikh, A., J. Agric. Food Chem., 1974, vol. 22, p. 918. https://doi.org/10.1021/jf60195a022

    Article  CAS  PubMed  Google Scholar 

  8. Omar, M.A., Shaker, Y.M., Galal, S.A., Ali, M.M., Kerwin, S.M., Li, J., Ramadan, R.A., and El Diwani, H.I., Bioorg. Med. Chem., 2012, vol. 20, p. 6989. https://doi.org/10.1016/j.bmc.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  9. Kühler, T.C., Swanson, M., Shcherbuchin, V., Larsson, H., Mellgård, B., and Sjöström, J.E., J. Med. Chem., 1998, vol. 41, p. 1777. https://doi.org/10.1021/jm970165r

    Article  PubMed  Google Scholar 

  10. Horn, J., Clin. Ther., 2000, vol. 22, p. 266. https://doi.org/10.1016/S0149-2918(00)80032-6

    Article  CAS  PubMed  Google Scholar 

  11. Veerakumari, L. and Munuswamy, N., Vet. Parasitol., 2000, vol. 91, p. 129. https://doi.org/10.1016/S0304-4017(00)00258-2

    Article  CAS  PubMed  Google Scholar 

  12. Merino, G., Jonker, J.W., Wagenaar, E., Pulido, M.M., Molina, A.J., Alvarez, A.I., and Schinkel, A.H., Drug Metab. Dispos., 2005, vol. 33, p. 614. https://doi.org/10.1124/dmd.104.003319

    Article  CAS  PubMed  Google Scholar 

  13. Iemura, R., Kawashima, T., Fukuda, T., and Tsukamoto, G., J. Med. Chem., 1986, vol. 29, p. 1178. https://doi.org/10.1021/jm00157a010

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, Z., Arnaiz, D.O., Griedel, B., Sakata, S., Dallas, J.L., Whitlow, M., Trinh, L., Morrissey, M.M., and Shaw, K.J., Bioorg. Med. Chem. Lett., 2000, vol. 10, p. 963. https://doi.org/10.1016/S0960-894X(00)00139-6

    Article  CAS  PubMed  Google Scholar 

  15. Achar, K.C.S., Hosamani, K.M., and Seetharamareddy, H.R., Eur. J. Med. Chem., 2010, vol. 45, p. 2048. https://doi.org/10.1016/j.ejmech.2010.01.029

    Article  CAS  PubMed  Google Scholar 

  16. Budow, S., Kozlowska, M., Gorska, A., Kazimierczuk, Z., Colla, P.L., Gosselin, G., and Seela, F., Arkivoc, 2009, vol. 2009, part (iii), p. 225. https://doi.org/10.3998/ark.5550190.0010.319

    Article  Google Scholar 

  17. Kamal, A., Kumar, P.P., Reekanth, S.K., Seshadri, B.N., and Ramulu, P., Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 2594. https://doi.org/10.1016/j.bmcl.2008.03.039

    Article  CAS  PubMed  Google Scholar 

  18. Kazimierczuk, Z., Upcroft, J.A., Upcroft, P., Górska, A., Starociak, B., and Laudy, A., Acta Biochim. Pol., 2002, vol. 49, p. 185. PMID: 12136939.

    Article  CAS  Google Scholar 

  19. Yonemoto, R., Shimada, M., Gunawan-Puteri, M.D.P.T., Kato, E., and Kawabata, J., J. Agric. Food Chem., 2014, vol. 62, p. 8411. https://doi.org/10.1021/jf502667z

    Article  CAS  PubMed  Google Scholar 

  20. Gunawan-Puteri, M.D.P.T., Kato, E., and Kawabata, J., J. Sci. Food Agric., 2012, vol. 92, p. 606. https://doi.org/10.1002/jsfa.4615

    Article  CAS  PubMed  Google Scholar 

  21. Williams, L.K., Zhang, X., Caner, S., Tysoe, C., Nguyen, N.T., Wicki, J., Andersen, R.J. Withers, S.G., and Brayer, G.D., Nat. Chem. Biol., 2015, vol. 11, p. 691. https://doi.org/10.1038/nchembio.1865

    Article  CAS  PubMed  Google Scholar 

  22. Tarling, C.A., Woods, K., Zhang, R., Brastianos, H.C., Brayer, G.D., Andersen, R.J., and Withers, S.G., Eur. J. Chem. Biol., 2008, vol. 9, p. 433. https://doi.org/10.1002/cbic.200700470

    Article  CAS  Google Scholar 

  23. Vértesy, L., Oeding, V., Bender, R., Zepf, K., and Nesemann, G., Eur. J. Biochem., 1984, vol. 141, p. 505. https://doi.org/10.1111/j.1432-1033.1984.tb08221.x

    Article  PubMed  Google Scholar 

  24. Murao, S., Goto, A., Matsui, Y., and Ohyama, K., Agric. Biol. Chem., 1980, vol. 44, p. 1679. https://doi.org/10.1271/bbb1961.44.1679

    Article  CAS  Google Scholar 

  25. Rahim, F., Ullah, H., Junaid, M., Hussain, S., Rehman, W., Sajid, M., Khan, M.N., and Khan, K.M., Bioorg. Chem., 2015, vol. 62, p. 15. https://doi.org/10.1016/j.bioorg.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  26. Rahim, F., Javid, M.T., Ullah, H., Wadood, A., Khan, M.A., Khan, F., and Khan, K.M., Bioorg. Chem., 2015, vol. 62, p. 106. https://doi.org/10.1016/j.bioorg.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  27. Ullah, H., Khan, F., Rahim, Ur Rehman, Z., Taha, M., Wadood, A., Ahmad, F., Wahab, Z. Uddin, I., and Zaman, K., J. Ong. Chem. Res., 2019, vol. 4, no. 1, p. 32. https://doi.org/10.5281/zenodo.3576583

    Article  CAS  Google Scholar 

  28. Taha, M., Sultan, S., Nuzar, H.A., Naz, H., and Ullah, H., Bioorg. Med. Chem., 2016, vol. 24, p. 3696. https://doi.org/10.1016/j.bmc.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  29. Rashid, U., Rahim, F., Taha, M., Arshad, M., Ullah, H., Mahmood, T., and Ali, M., Bioorg. Chem., 2016, vol. 66, p. 111. https://doi.org/10.1016/j.bioorg.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  30. Noreen, T., Taha, M., Ismail, N.H., Mohammad, J.I., Ullah, H., Irshad, M., and Ali, M., Bioorg. Chem., 2017, vol. 72, p. 248. https://doi.org/10.1016/j.bioorg.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  31. Rahim, F., Ullah, K., Ullah, H., Shaukat, A., Hussain, S., and Khan, K.M., Bioorg. Chem., 2015, vol. 58, p. 81. https://doi.org/10.1016/j.bioorg.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  32. Taha, M., Ismail, N.H., Ullah, H., Salar, U., and Khan, K.M., Bioorg. Chem., 2016, vol. 68, p. 56. https://doi.org/10.1016/j.bioorg.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  33. Taha, M., Ullah, H., Al Muqarrabun, L.M.R., Khan, M.N., Rahim, F., Ahmat, N., Javid, M.T., Ali, M., and Khan, K.M., Bioorg. Med. Chem., 2018, vol. 26, p. 152. https://doi.org/10.1016/j.bmc.2017.11.028

    Article  CAS  PubMed  Google Scholar 

  34. Taha, M., Ullah, H., Al Muqarrabun, L.M.R., Khan, M.N., Rahim, F., Ahmat, N., Ali, M., and Perveen, S., Eur. J. Med. Chem., 2018, vol. 143, p. 1757. https://doi.org/10.1016/j.ejmech.2017.10.071

    Article  CAS  PubMed  Google Scholar 

  35. Gollapalli, M., Taha, M., Ullah, H., Nawaz, M., Al Muqarrabun, L.M.R., Rahim, F., Qureshi, F., Mosaddik, A., Ahmat, N., and Khan, K.M., Bioorg. Chem., 2018, vol. 80, p. 112. https://doi.org/10.1016/j.bioorg.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  36. Ullah, H., Rahim, F., Taha, M., Uddin, I., Wadood, A., Shah, S.A.A., Farooq, R.K., Nawaz, M., Wahab, Z., and Khan, K.M., Bioorg. Chem., 2018, vol. 78, p. 58. https://doi.org/10.1016/j.bioorg.2018.02.020

    Article  CAS  PubMed  Google Scholar 

  37. Rahim, F., Malik, F., Ullah, H., Wadood, A., Khan, F., Javid, M.T., Taha, M., Rehman, W., Rehman, A.U., and Khan, K.M., Bioorg. Chem., 2015, vol. 60, p. 42. https://doi.org/10.1016/j.bioorg.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  38. Taha, M., Ismail, N.H., Imran, S., Selvaraj, M., Rashwan, H., Farhanah, F.U., Rahim, F., Kesavanarayanan, K.S., and Ali, M., Bioorg. Chem., 2015, vol. 61, p. 36. https://doi.org/10.1016/j.bioorg.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  39. Taha, M., Ismail, N.H., Imran, S., Mohamad, M.H., Wadood, A., Rahim, F., Saad, S.M., Rehman, A., Khan, K.M., Bioorg. Chem., 2016, vol. 65, p. 100. https://doi.org/10.1016/j.bioorg.2016.02.004

  40. Taha, M., Ismail, N.H., Lalani, S., Fatmid, M.Q., Wahab, A., Siddiqui, S., Khan, K.M., Imran, S., and Choudhary, M.I., Eur. J. Med. Chem., 2015, vol. 92, p. 387. https://doi.org/10.1016/j.ejmech.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  41. Shahkhalili, Y., Macé, K., Moulin, J., Zbinden, I., and Acheson, K.J., J. Nutr., 2011, vol. 141, p. 81. https://doi.org/10.3945/jn.110.126557

    Article  CAS  PubMed  Google Scholar 

  42. Imran, S., Taha, M., Selvaraj, M., Ismail, N.H., Chigurupati, S., and Mohammad, J.I., Bioorg. Chem., 2017, vol. 73, p. 121. https://doi.org/10.1016/j.bioorg.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  43. Williams, L.K., Zhang, X., Caner, S., Williams, D.E., Coleman, J., McNeill, J.H., and Yuen, V., Nat. Chem. Biol., 2015, vol. 11, p. 691. https://doi.org/10.1038/nchembio.1865

    Article  CAS  PubMed  Google Scholar 

  44. Dassault Systèmes BIOVIA, Discovery Studio, San Diego: Dassault Systèmes, 2018.

  45. Setny, P. and Trylska, J., J. Chem. Inf. Model., 2009, vol. 49, p. 390. https://doi.org/10.1021/ci800361a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors thank the Higher Education Commission of Pakistan for providing a research grant under National Research Program for Universities (project nos. 5721, 5092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hayat Ullah or F. Rahim.

Ethics declarations

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, H., Ullah, H., Taha, M. et al. Synthesis, In Vitro α-Amylase Activity, and Molecular Docking Study of New Benzimidazole Derivatives. Russ J Org Chem 57, 968–975 (2021). https://doi.org/10.1134/S1070428021060130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021060130

Keywords:

Navigation