Skip to main content
Log in

Modified Activated Carbon/Cu(OH)2 Nanocomposite for Oil/Water Emulsion Separation

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this study, a nanocomposite of activated carbon modified by copper hydroxide nanoparticles and stearic acid with high hydrophobic–oleophilic characteristics was synthesized, characterized and used to remove vegetable oils from oil/water emulsion. Effects of different parameters such as initial pH, temperature, and concentration on oil removal from emulsion were investigated. Langmuir and Freundlich adsorption isotherm models were employed to analyze equilibrium data. The results showed that maximum oil/water separation efficiency obtained about 100% at pH 7, the maximum oil adsorption capacity obtained 6.27 g/g, and the oil adsorption process by the nanocomposite followed the Freundlich adsorption isotherm. The thermodynamic results showed that the oil adsorption process with synthetic adsorbent is exothermic and spontaneous. The results showed that the resulted nanocomposite is an efficient and reusable adsorbent to remove vegetable oils from oil/water emulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Sabouri, M.R., et al., Process Safety & Environmental Protection, 2019, vol. 126, pp. 182–192. https://doi.org/10.1016/j.psep.2019.04.006

    Article  CAS  Google Scholar 

  2. Nwadiogbu, J.V. Ajiwe, and Okoye, P., Taibah University for Science, 2016, vol. 10, pp. 56–63. https://doi.org/10.1016/j.jtusci.2015.03.014

    Article  Google Scholar 

  3. Frapiccini, E. and Marini, M., Water, Air, & Soil Pollution, 2015, vol. 226, p. 246. https://doi.org/10.1007/s11270-015-2510-7

    Article  CAS  Google Scholar 

  4. Sabir, S., Critical Reviews in Environmental Science & Technology, 2015, vol. 45, pp. 1916–1945. https://doi.org/10.1080/10643389.2014.1001143

    Article  CAS  Google Scholar 

  5. Okiel, K., El-Sayed, M., and El-Kady, M.Y., Egyptian J. Petroleum, 2011, vol. 20, pp. 9–15. https://doi.org/10.1016/j.ejpe.2011.06.002

    Article  CAS  Google Scholar 

  6. Wahi, R., et al., Separation & Purification Technology, 2013, vol. 113, pp. 51–63. https://doi.org/10.1016/j.seppur.2013.04.015

    Article  CAS  Google Scholar 

  7. Freitas, A.M. Mendes and Coelho, G., Chemical Thermodynamics, 2007, vol. 39, pp. 1027–1037. https://doi.org/10.1016/j.jct.2006.12.016

    Article  CAS  Google Scholar 

  8. Othman, M.R., Int. J. Electrochem. Sci., 2015, vol. 10, pp. 4911–4921.

    Google Scholar 

  9. Khalifeh, S. and T.D. Burleigh, Magnesium and Alloys, 2018, vol. 6, pp. 327–336. https://doi.org/10.1016/j.jma.2018.08.003

    Article  CAS  Google Scholar 

  10. Cao, C. and Cheng, J., Materials Letters, 2018, vol. 217, pp. 5–8. https://doi.org/10.1016/j.matlet.2018.01.026

    Article  CAS  Google Scholar 

  11. Gao, J., et al., Central European J. Chem., 2012, vol. 10, pp. 1766–1772. https://doi.org/10.2478/s11532-012-0116-0

    Article  CAS  Google Scholar 

  12. Nikkhah, A.A., et al., Chem. Eng., 2015, vol. 262, pp. 278–285. https://doi.org/10.1016/j.cej.2014.09.077

    Article  CAS  Google Scholar 

  13. Wang, L., et al., Nanoscale, 2012, vol. 4, pp. 6850–6855. https://doi.org/10.1039/C2NR31898A

    Article  CAS  PubMed  Google Scholar 

  14. Mishra, A.K., et al., Scientific Reports, 2020, vol. 10, pp. 1–10. https://doi.org/10.1038/s41598-020-67986-4

    Article  CAS  Google Scholar 

  15. Liu, Z., et al., Surface and Coatings Technology, 2018, vol. 352, pp. 313–319. https://doi.org/10.1016/j.surfcoat.2018.08.026

    Article  CAS  Google Scholar 

  16. Zhang, M., et al., Applied Surface Science, 2012, vol. 261, pp. 764–769. https://doi.org/10.1016/j.apsusc.2012.08.097

    Article  CAS  Google Scholar 

  17. Arfaoui, M., et al., Applied Surface Science, 2017, vol. 397, pp. 19–29. https://doi.org/10.1016/j.apsusc.2016.11.085

    Article  CAS  Google Scholar 

  18. Devamani, R.H.P. and Alagar, M., Nano Biomed Eng, 2013, vol. 5, pp. 116–120 https://doi.org/10.5101/nbe.v5i3

    Article  Google Scholar 

  19. Zeng, Y.-X., et al., J. Nanomaterials, 2013, vol. 2013, pp. 1–6. https://doi.org/10.1155/2013/270490

    Article  CAS  Google Scholar 

  20. Bayat, M., Javanbakht, V., and Esmaili, J., Int. J. Biological Macromolecules, 2018, vol. 116, pp. 607–619. https://doi.org/10.1016/j.ijbiomac.2018.05.012

    Article  CAS  Google Scholar 

  21. El Ghandoor, H., et al., Int. J. Electrochem. Sci, 2012, vol. 7, pp. 5734–5745.

    CAS  Google Scholar 

  22. Ding, Y., et al., ACS Applied Materials & Interfaces, 2018, vol. 10, pp. 6652–6660. https://doi.org/10.1021/acsami.7b13626

    Article  CAS  Google Scholar 

  23. Zhu, Z., Ding, Y., and Heglund, D., US Patent App. 16/277437, 2019.

  24. Liu, P., et al., Applied Surface Science, 2018, vol. 447, pp. 656–663. https://doi.org/10.1016/j.apsusc.2018.04.030

    Article  CAS  Google Scholar 

  25. Urbina-Villalba, G., arXiv preprint arXiv:1608.04015, 2016, vol. 5, pp. 1–15.

    Google Scholar 

  26. Derjaguin, B., Churaev, N., and Muller, V., Surface Forces, 1987, Berlin: Springer, 1987.

    Book  Google Scholar 

  27. Wang, Q., et al., Env. Sci.: Water Research & Technology, 2018, vol. 4, pp. 1553–1563. https://doi.org/10.1039/C8EW00188J

    Article  CAS  Google Scholar 

  28. Hao, L., et al., Industrial & Eng. Chem. Res., 2016. vol. 55, pp. 1748–1759. https://doi.org/10.1021/acs.iecr.5b04401

    Article  CAS  Google Scholar 

  29. Li, Z., et al., Colloid & Polymer Sci., 2016, vol. 294, pp. 1943–1958. https://doi.org/10.1007/s00396-016-3956-x

    Article  CAS  Google Scholar 

  30. Xu, H., et al., Chem. Eng. J., 2018, vol. 337, pp. 10–18. https://doi.org/10.1016/j.cej.2017.12.084

    Article  CAS  Google Scholar 

  31. Javanbakht, V., et al., Powder Technology, 2016, vol. 302, pp. 372–383. https://doi.org/10.1016/j.powtec.2016.08.069

    Article  CAS  Google Scholar 

  32. Pauzan, M., Satirawaty, A., and Ahad, N., J. Chemistry, 2018, vol. 2018. https://doi.org/10.1155/2018/5059791

    Article  Google Scholar 

  33. Gulistan, A.S., et al., Desalination & Water Treatment, 2016, vol. 57, pp. 15724–15732. https://doi.org/10.1080/19443994.2015.1130661

    Article  CAS  Google Scholar 

  34. Rajak, V., et al., Chem. Eng. Comm., 2018, vol. 205, pp. 897–913. https://doi.org/10.1080/00986445.2017.1423288

    Article  CAS  Google Scholar 

  35. Asadpour, R., et al., Water Sci. & Tech., 2014, vol. 70, pp. 1220–1228. https://doi.org/10.2166/wst.2014.355

    Article  CAS  Google Scholar 

  36. Hassan, F., et al., Pakistan J. Eng. & Appl. Sci., 2018. vol. 23, pp. 86–92.

    Google Scholar 

  37. Kazemi, J. and Javanbakht, V., Int. J. Biological Macromol., 2020, vol. 154, pp. 1426–1437. https://doi.org/10.1016/j.ijbiomac.2019.11.024

    Article  CAS  Google Scholar 

  38. Keyvani, F., Rahpeima, S., and Javanbakht, V., Solid State Sciences, 2018, vol. 83, pp. 31–42. https://doi.org/10.1016/j.solidstatesciences.2018.06.007

    Article  CAS  Google Scholar 

  39. Sareban, Z. and Javanbakht, V., Korean J. Chem. Eng., 2017, vol. 34, pp. 2886–2900. https://doi.org/10.1007/s11814-017-0216-9

    Article  CAS  Google Scholar 

  40. Wang, Y., Feng, Y., and Yao, J., J. Colloid Interface Sci., 2019, vol. 533, pp. 182–189. https://doi.org/10.1016/j.jcis.2018.08.073

    Article  CAS  PubMed  Google Scholar 

  41. Xue, Z., et al., Rsc Advances, 2013, vol. 3, pp. 23432–23437. https://doi.org/10.1039/C3RA41902A

    Article  CAS  Google Scholar 

  42. Teas, C., et al., Desalination, 2001, vol. 140, pp. 259–264. https://doi.org/10.1016/S0011-9164(01)00375-7

    Article  CAS  Google Scholar 

  43. Rajakovic, V., et al., J. Hazardous Materials, 2007, vol. 143, pp. 494–499. https://doi.org/10.1016/j.jhazmat.2006.09.060

    Article  CAS  Google Scholar 

  44. Ibrahim, S., Ang, H.-M., and Wang, S., Bioresource technology, 2009, vol. 100, pp. 5744–5749. https://doi.org/10.1016/j.biortech.2009.06.070

    Article  CAS  PubMed  Google Scholar 

  45. Mysore, D., Viraraghavan, T., and Jin, Y.-C., Water Research, 2005, vol. 39, pp. 2643–2653. https://doi.org/10.1016/j.watres.2005.04.034

    Article  CAS  PubMed  Google Scholar 

  46. Ahmad, A., Sumathi, S., and Hameed, B., Water research, 2005, vol. 39, pp. 2483–2494. https://doi.org/10.1016/j.watres.2005.03.035

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support of this work by ACECR Institute of Higher Education (Isfahan Branch) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Javanbakht.

Ethics declarations

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javanbakht, V., Aghili, P. Modified Activated Carbon/Cu(OH)2 Nanocomposite for Oil/Water Emulsion Separation. Russ J Appl Chem 94, 680–691 (2021). https://doi.org/10.1134/S1070427221050177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221050177

Keywords:

Navigation