Skip to main content
Log in

Reactive Adsorption Desulfurization of Dibenzothiophene in Presence of Mesoporous Adsorbents

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Reactive adsorption desulfurization of a model fuel containing dibenzothiophene with various adsorbents was studied. Adsorbents based on MCM-41 mesoporous material with supported Ni and ZnO phases were prepared and characterized. The desulfurization activity of the material in a fixed-bed flow-through reactor was compared to that of alumina-based adsorbents. The adsorbent based on MCM-41 considerably surpasses its analog on Al2O3 support in the adsorption capacity in reactive adsorption desulfurization of dibenzothiophene at 350°С, pressure of 2 MPa, and feed space velocity of 1 h–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Kampouraki, Z.C., Giannakoudakis, D.A., Triantafyllidis, K.S., and Deliyanni, E.A., Green Chem., 2019, vol. 21, pp. 6685–6698. https://doi.org/10.1039/C9GC03234G

    Article  CAS  Google Scholar 

  2. Eseva, E.A., Akopyan, A.V., Anisimov, A.V., and Maximov, A.L., Petrol. Chem., 2020, vol. 60, no. 9, pp. 979–990. https://doi.org/10.1134/S0965544120090091 

    Article  CAS  Google Scholar 

  3. Shiraishi, Y., Tachibana, K., Hirai, T., and Komasawa, I., Ind. Eng. Chem. Res., 2002, vol. 41, pp. 4362–4375. https://doi.org/10.1021/ie010618x

    Article  CAS  Google Scholar 

  4. Choi, E.S., Roces, S., Dugos, N., Arcega, A., and Wan, M.-W., J. Clean. Prod., 2017, vol. 161, pp. 267–276. https://doi.org/10.1016/j.jclepro.2017.05.072

    Article  CAS  Google Scholar 

  5. Maity, U., Basu, J.K., and Sengupta, S., Fuel Process. Technol., 2014, vol. 121, pp. 119–124. https://doi.org/10.1016/j.fuproc.2014.01.012

    Article  CAS  Google Scholar 

  6. Patent US 6254766 B1, Publ. 2001.

  7. Zhang, Y., Yang, Y., Lin, F., Yang, M., Liu, T., Jiang, Z., and Li, C., Chin. J. Catal., 2013, vol. 34, pp. 140–145. https://doi.org/10.1016/S1872-2067(11)60513-5

    Article  CAS  Google Scholar 

  8. Liu, Y., Pan, Y., Wang, H., Liu, Y., and Liu, C., Chin. J. Catal., 2018, vol. 39, pp. 1543–1551. https://doi.org/10.1016/S1872-2067(18)63085-2

    Article  CAS  Google Scholar 

  9. Ullah, R., Bai, P., Wu, P., Liu, B., Subhan, F., and Yan, Z., Micropor. Mesopor. Mater., 2017, vol. 238, pp. 36–45. https://doi.org/10.1016/j.micromeso.2016.02.037

    Article  CAS  Google Scholar 

  10. Naranov, E.R., Dement’ev, K.I., Gerzeliev, I.M., Kolesnichenko, N.V., Roldugina, E.A., and Maksimov, A.L., Petrol. Chem., 2019, vol. 59, pp. 247–261. https://doi.org/10.1134/S0965544121030105 

    Article  CAS  Google Scholar 

  11. Naranov, E., Golubev, O., Zanaveskin, K., Guseva, A., Nikulshin, P., Kolyagin, Y., Maximov, A., and Karakhanov, E., ACS Omega, 2020, vol. 5, no. 12, pp. 6611–6618. https://doi.org/10.1021/acsomega.9b04373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure Appl. Chem., 1985, vol. 57, pp. 603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  13. Silvestre-Albero, J., Sepúlveda-Escribano, A., and Rodríguez Reinoso, F., Micropor. Mesopor. Mater., 2008, vol. 113, pp. 362–369. https://doi.org/10.1016/j.micromeso.2007.11.037

    Article  CAS  Google Scholar 

  14. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S., Nature, 1992, vol. 359, pp. 710–712. https://doi.org/10.1038/359710a0

    Article  CAS  Google Scholar 

  15. Lyu, Y., Sun, Z., Xin, Y., Liu, Y., Wang, C., and Liu, X., Chem. Eng. J., 2019, vol. 374, pp. 1109–1117. https://doi.org/10.1016/j.cej.2019.06.01

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to staff members of the Nanochemistry and Nanomaterials Center for Shared Use, Moscow State University, for analyzing the samples by transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Golubev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 5, pp. 580–589, January, 2021 https://doi.org/10.31857/S0044461821050054

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, O.V., Zhou, H. & Karakhanov, E.A. Reactive Adsorption Desulfurization of Dibenzothiophene in Presence of Mesoporous Adsorbents. Russ J Appl Chem 94, 586–594 (2021). https://doi.org/10.1134/S1070427221050050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221050050

Keywords:

Navigation