Skip to main content
Log in

Structure and Thermodynamic Properties of the DyGaTi2O7 and EuGaTi2O7 Titanates

  • Published:
Inorganic Materials Aims and scope

Abstract—

The DyGaTi2O7 and EuGaTi2O7 titanates have been prepared by solid-state reactions in a starting mixture of Dy2O3 (Eu2O3), Ga2O3, and TiO2 via firing in air at temperatures of 1273 and 1573 K, and their crystal structure has been studied by X-ray diffraction. Their high-temperature heat capacity (350–1000 K) has been determined by differential scanning calorimetry. The Cp(T) experimental data have been used to calculate the thermodynamic functions of the titanates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Portnoi, K.I. and Timofeeva, N.I., Kislorodnye soedineniya redkozemel’nykh elementov (Rare-Earth Oxide Compounds), Moscow: Metallurgiya, 1986.

  2. Komissarova, L.N., Shatskii, V.M., Pushkina, G.Ya., Shcherbakova, L.G., and Mamsurova, L.G., Soedineniya redkozemel’nykh elementov. Karbonaty, oksalaty, nitraty, titanaty (Rare-Earth Compounds: Carbonates, Oxalates, Nitrates, and Titanates), Moscow: Nauka, 1984.

  3. Farmer, J.M., Boatner, L.A., Chakoumakos, B.C., Du, M.-H., Lance, M.J., Rawn, C.J., and Bruan, J.C., Structural and crystal chemical properties of rare-earth titanate pyrochlores, J. Alloys Compd., 2014, vol. 605, pp. 63–70.https://doi.org/10.1016/j.jallcom.2014.03.153

    Article  CAS  Google Scholar 

  4. Chen, C., Gao, Z., Yan, H., and Reece, M.J., Crystallographic structure and ferroelectricity of (A xLa1 – x)2Ti2O7 (A = Sm and Eu) solid solutions with high T c, J. Am. Ceram. Soc., 2016, vol. 99, no. 2, pp. 523–530.https://doi.org/10.1111/jace.13970

    Article  CAS  Google Scholar 

  5. Gao, Z., Shi, B., Ye, H., Yan, H., and Reece, M., Ferroelectric and dielectric properties of Nd2 – xCexTi2O7 ceramics, Adv. Appl. Ceram., 2014, vol. 144, no. 4, pp. 191–197.https://doi.org/10.1179/1743676114Y.0000000221

    Article  CAS  Google Scholar 

  6. Genkina, E.A., Adrianov, I.I., Belokoneva, E.A., Mill’, B.V., Maksimov, B.A., and Tamazyan, R.A., Synthetic GdGaTi2O7: a new polymorph of polymignite, Kristallografiya, 1991, vol. 36, no. 9, pp. 1408–1414.

    CAS  Google Scholar 

  7. Petrakovskii, G.A., Drokina, T.V., Shadrina, A.L., Velikanov, D.A., Bayukov, O.A., Molokeev, M.S., Kartashev, A.V., and Stepanov, G.N., State of spin glass in SmFeTi2O7, Phys. Solid State, 2011, vol. 53, no. 9, pp. 1855–1858.https://doi.org/10.1134/S1063783411090241

    Article  CAS  Google Scholar 

  8. Petrakovskii, G.A., Drokina, T.V., Velikanov, D.A., Bayukov, O.A., Molokeev, M.S., Kartashev, A.V., Shadrina, A.L., and Matsuk, M.S., Magnetic state of the GdFeTi2O7 compound, Phys. Solid State, 2012, vol. 54, no. 9, pp. 1813–1916.https://doi.org/10.1134/S1063783412090235

    Article  CAS  Google Scholar 

  9. Drokina, T.V., Petrakovskii, G.A., Molokeev, M.S., Arauzo, A., and Bartolomé, J., Spin-glass magnetism in RFeTi2O7 (R = Lu and Tb), Phys. Procedia, 2015, no. 12, pp. 580–588.https://doi.org/10.1016/j.phpro.2015.12.074

  10. Drokina, T.V., Petrakovskii, G.A., Molokeev, M.S., Velikanov, D.A., Pletnev, O.N., and Bayukov, O.A., Specific features of the crystal structure and magnetic properties of the DyFeTi2O7 compound, Phys. Solid State, 2013, vol. 55, no. 10, pp. 2037–2042.https://doi.org/10.1134/S1063783413100107

    Article  CAS  Google Scholar 

  11. Drokina, T.V., Molokeev, M.S., Velikanov, D.A., Pertrakovskii, G.A., and Bayukov, O.A., HoFeTi2O7: synthesis, peculiarities of the crystal structure, and magnetic properties, Phys. Solid State, 2020, vol. 62, no. 3, pp. 464–471.https://doi.org/10.21883/FTT.2020.03.49006.630

    Article  CAS  Google Scholar 

  12. Drokina, T.V., Petrakovskii, G.A., Velikanov, D.A., and Molokeev, M.S., X-ray and magnetic measurements of TmFeTi2O7, Solid State Phenom., 2014, vol. 215, pp. 470–473.https://doi.org/10.4028/www.scientific.net/SSP.215.470

    Article  CAS  Google Scholar 

  13. Drokina, T.V., Petrakovskii, G.A., Molokeev, M.S., and Velikanov, D.A., Synthesis, crystal structure, and magnetic properties of the YbFeTi2O7 Compound, Phys. Solid State, 2018, vol. 60, no. 3, pp. 532–536.https://doi.org/10.1134/S1063783418030095

    Article  CAS  Google Scholar 

  14. Denisova, L.T., Molokeev, M.S., Chumilina, L.G., Kargin, Yu.F., Denisov, V.M., and Ryabov, V.V., Synthesis, crystal structure and thermodynamic properties of LuGaTi2O7, Inorg. Mater., 2020, vol. 56, no. 12, pp. 1242–1247.https://doi.org/10.1134/S0020168520120055

    Article  CAS  Google Scholar 

  15. Denisov, V.M., Denisova, L.T., Irtyugo, L.A., and Biront, V.S., Thermal physical properties of Bi4Ge3O12 single crystals, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1362–1365.https://doi.org/10.1134/S1063783410070073

    Article  CAS  Google Scholar 

  16. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Beletskii, V.V., and Denisov, V.M., High-temperature heat capacity and thermodynamic properties of Tb2Sn2O7, Inorg. Mater., 2017, vol. 53, no. 1, pp. 93–95.https://doi.org/10.1134/S0020168517010046

    Article  CAS  Google Scholar 

  17. Bruker AXS TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data – User’s Manual, Karlsruhe: Bruker AXS, 2008.

  18. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  19. Maier, C.G. and Kelley, K.K., An equation for the representation of high temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, pp. 3243–3246.https://doi.org/10.1021/ja01347a029

    Article  CAS  Google Scholar 

  20. Leitner, J., Chuchvalec, P., Sedmidubský, D., Strejc, A., and Abrman, P., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 395, pp. 27–46.https://doi.org/10.1016/S0040-6031(02)00176-6

    Article  CAS  Google Scholar 

  21. Leitner, J., Voňka, P., Sedmidubský, D., and Svoboda, P., Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides, Thermochim. Acta, 2010, vol. 497, pp. 7–13.https://doi.org/10.1016/j.tca.2009.08.002

    Article  CAS  Google Scholar 

  22. Kumok, V.N., in Pryamye i obratnye zadachi khimicheskoi termodinamiki (Direct and Inverse Problems in Chemical Thermodynamics), Novosibirsk: Nauka, 1987, pp. 108–123.

  23. Gordienko, S.P., Fenochka, B.V., and Viksman, G.Sh., Termodinamika soedinenii lantanoidov (Thermodynamics of Lanthanide Compounds), Kiev: Naukova Dumka, 1979.

  24. Zinkevich, M. and Aldinger, F., Thermodynamic assessment of the gallium–oxygen system, J. Am. Ceram. Soc., 2004, vol. 87, no. 4, pp. 683–691.

    Article  CAS  Google Scholar 

  25. Guo, Z., Verma, A., Wu, X., Sun, F., Hickman, A., Masui, T., Kuramata, A., Higashiwaki, M., Jena, D., and Luo, T., Anisotropic thermal conductivity in single crystal β-gallium oxide, Appl. Phys. Lett, 2015, vol. 106, paper 111909.https://doi.org/10.1063/1.4916078

  26. Fiziko-khimicheskie svoistva okislov. Spravochnik (Physicochemical Properties of Oxides: A Handbook), Samsonov, G.V., Ed., Moscow: Metallurgiya, 1978.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

In this work, we used equipment at the Krasnoyarsk Regional Shared Research Facilities Center, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the Siberian Federal University federal state autonomous educational institution of higher education, project no. FSRZ-2020-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Molokeev, M.S., Kargin, Y.F. et al. Structure and Thermodynamic Properties of the DyGaTi2O7 and EuGaTi2O7 Titanates. Inorg Mater 57, 733–740 (2021). https://doi.org/10.1134/S0020168521070050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521070050

Keywords:

Navigation