Skip to main content
Log in

Rock magnetic characterization and paleomagnetic directional analysis of Isla San Pedro Nolasco dikes, Gulf of California, Mexico

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Isla San Pedro Nolasco is located in the central-eastern part of the Gulf of California, formed by late Miocene (ca. 9–11 Ma) hypabyssal rocks, between the Sonora coast and oblique-divergent Pacific-North America plate boundary. Continental blocks exposed as islands in the Gulf of California host key geological evidence for understanding the evolution of the plate boundary. We present a detailed rock magnetic study of 31 independently oriented paleomagnetic cores from late Miocene dikes collected from a southeastern bay of the island. Opaque microscopy and rock magnetic properties suggest that magnetic mineralogy is mainly Ti-poor titanomagnetite or magnetite with limited maghemite and rarely titanohematite. Magnetization has two components. The primary and more stable is of medium to high temperature (300–560 °C) or high fields (up to 100 mT). The primary thermal remanent magnetization (TRM) and the oxide mineral textures observed suggest that cores from these dikes provide high reliability for paleomagnetic analysis. The mean paleomagnetic direction is as follows: Dec = 354.86°, Inc = 46.2°, α95 = 5.2, k = 44. Comparison of these results to the 10 Ma paleomagnetic pole for North America indicates that Isla San Pedro Nolasco has experienced no vertical-axis rotation but has displaced ~ 100 km to the northwest, similar to independent estimates for fault offset along with this structural system from the northern Gulf of California and regional tectonic reconstructions. These results, supported by detailed geological studies, indicate that the island was detached from mainland Mexico by transtensional faulting in the late Miocene Gulf of California shear zone that also formed the adjacent Yaqui pull-apart basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Upon request to the author.

Code availability

Not applicable.

Not applicable.

References

  • Anderson CA (1950) Geology of islands and neighboring land areas, in 1940 E. W. Scripps Cruise to the Gulf of California. Geol Soc Am Mem 43(Pt. 1):56

    Google Scholar 

  • Aragón-Arreola M, Morandi M, Martín-Barajas A, Delgado-Argote L, González-Fernández A (2005) Structure of the rift basins in the central Gulf of California: kinematic implications for oblique rifting. Tectonophysics 409:19–38. https://doi.org/10.1016/j.tecto.2005.08.002

    Article  Google Scholar 

  • Aragón-Arreola M, Martin-Barajas A (2007) Westward migration of extension in the northern Gulf of California, Mexico. Geology 35:571–574. https://doi.org/10.1130/G23360A.1

    Article  Google Scholar 

  • Atwater T, Stock J (1998) Pacific-North America plate tectonics of the neogene Southwestern United States: An update. International Geology Review 40:375–402. https://doi.org/10.1080/00206819809465216.5

    Article  Google Scholar 

  • Balestrieri ML, Ferrari L, Bonini M, Duque-Trujillo J, Cerca M, Moratti G, Corti G (2017) Onshore and offshore apatite fission-track dating from the southern Gulf of California: Insights into the time-space evolution of the rifting. Tectonophysics 719:148–161. https://doi.org/10.1016/j.tecto.2017.05.012

    Article  Google Scholar 

  • Batiza R (1978) Geology, petrology, and geochemistry of Isla Tortuga, a recently formed tholeiitic island in the Gulf of California. Geol Soc Amer Bull 89:1309–1324. https://doi.org/10.1130/0016-7606

  • Bennett SEK, Oskin ME, Iriondo A (2013) Transtensional rifting in the proto–Gulf of California, near Bahía Kino, Sonora, México. Geol Soc Am Bull 125:1752–1782. https://doi.org/10.1130/B30676.1

    Article  Google Scholar 

  • Bennett SEK, Oskin ME (2014) Oblique rifting ruptures continents: an example from the Gulf of California shear zone. Geology 42:215–218. https://doi.org/10.1130/G34904.1

    Article  Google Scholar 

  • Bennett SEK, Oskin ME, Iriondo A, Kunk MJ (2016) Slip history of the La Cruz fault: development of a late Miocene transformin response to increased rift obliquity in the northern Gulf of California. Tectonophysics 693(Part B):409–435

    Article  Google Scholar 

  • Bennett SE, Darin MH, Dorsey RJ, Skinner LA, Umhoefer PJ, Oskin ME (2016b) Animated tectonic reconstruction of the lower Colorado River region: implications for late Miocene to present deformation. In: Reynolds R (ed) Going LOCO, Investigations along the Lower Colorado River: Desert Studies Center Desert Symposium Field Guide and Proceedings, pp 73–86

  • Bennett SEK, Oskin ME, Iriondo A (2017) Latest Miocene transtensional rifting of northeast Isla Tiburón, eastern margin of the Gulf of California. Tectonophysics 719:86–106. https://doi.org/10.1016/j.tecto.2017.05.030

    Article  Google Scholar 

  • Bowles JA, Jackson MJ, Berquó TS, Sølheid PA, Gee JS (2013) Inferred time and temperature-dependent cation ordering in natural titanomagnetites. Nat Commun 4. https://doi.org/10.1038/ncomms2938

  • Cavazos-Alvarez JA (2015) Estratigrafía de la cuenca central de la isla Ángel de la Guarda: evidencias del inicio de extensión en el Golfo de California [Tesis de Maestría]: CICESE, 116 p

  • Córdoba-Ramírez F (2018) Interpretación de datos electromagnéticos marinos de fuente controlada sobre la cresta volcánica Tortuga, Golfo de California. [Tesis de Maestría]: CICESE, 128 p

  • Çubukçu HE (2015) Vertical variation in the deuteric oxidation of titanomagnetites in an ignimbrite deposit: Kizilkaya Ignimbrite (Cappadocia, Turkey). J Volcanol Geotherm Res 308:10–18. https://doi.org/10.1016/j.jvolgeores.2015.10.006

    Article  Google Scholar 

  • Darin MH, Dorsey RJ, Bennett SEK, Oskin ME, Iriondo A, Kunk MJ (2016) Late Miocene extension in coastal Sonora, Mexico: implications for the evolution of dextral shear in the proto-Gulf of California oblique rift. Tectonophysics 693(Part B):378–408. https://doi.org/10.1016/j.tecto.2016.04.038

    Article  Google Scholar 

  • Desonie DL (1992) Geologic and geochemical reconnaissance of Isla San Esteban: post-subduction orogenic volcanism in the Gulf of California. In: D.J. Geist and C.M. White (Editors), Special Issue in Honour of Alexander McBirney. J Volcanol Geotherm Res 52:123–140. https://doi.org/10.1016/0377-0273(92)90136-2

    Article  Google Scholar 

  • de Wall H, Kontny A, Vahle C (2004) Magnetic susceptibility zonation of the melilititic Riedheim dike (Hegau volcanic field, Germany): evidence for multiple magma pulses? J Volcanol Geotherm Res 131:143–163. https://doi.org/10.1016/S0377-0273(03)00360-3

    Article  Google Scholar 

  • Dmochowski J E (2005) Application of MODIS-ASTER (Master) simulator data to geological mapping of young volcanic regions in Baja California, Mexico [Ph. D thesis]: California Institute of Technology, 256 p

  • Dorsey RJ, Housen BA, Janecke SU, Fanning CM, Spears ALF (2011) Stratigraphic record of basin development within the San Andreas fault system: late Cenozoic Fish Creek-Vallecito basin, southern California. Geol Soc Am Bull 123(5–6):771–793

    Article  Google Scholar 

  • Dunlop DJ (2002) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. theoretical curves and tests using titanomagnetite data. J Geophys Res 107(B3):2056. https://doi.org/10.1029/2001JB000486

    Article  Google Scholar 

  • Dunlop DJ (2007) Transition warming and cooling remanences in magnetite. J. Geophys. Res. 112:B11103. https://doi.org/10.1029/2007JB005233

    Article  Google Scholar 

  • Dunlop DJ, Özdemir Ö (2015) Magnetizations in rocks and minerals. In: Treatise on Geophysics, 2nd edn (vol 5, pp 255–308). Elsevier B.V. https://doi.org/10.1016/B978-044452748-6.00093-6

  • Egli R (2003) Analysis of the field dependence of remanent magnetization curves. J Geophys Res 108(B2):2081. https://doi.org/10.1029/2002JB002023

    Article  Google Scholar 

  • Egli R (2004) Characterization of individual rock magnetic components by analysis of remanence curves: 2. fundamental properties of coercivity distributions. Phys Chem Earth 29(13–14):851–867. https://doi.org/10.1016/j.pce.2004.04.001

    Article  Google Scholar 

  • Egli R (2013) VARIFORC: an optimized protocol for calculating non-regular first-order reversal curve (FORC) diagrams. Glob Planet Chang 110(C):302–320. https://doi.org/10.1016/j.gloplacha.2013.08.003

    Article  Google Scholar 

  • Escalona-Alcázar FJ, Delgado-Argote LA, López-Martínez M, Rendón-Márquez G (2001) Late Miocene volcanism and marine incursions in the San Lorenzo Archipielago, Gulf of California, México. Revista Mexicana De Ciencias Geológicas 18:111–128

    Google Scholar 

  • Fabian K, Shcherbakov VP, McEnroe SA (2013) Measuring the Curie temperature. Geochemistry. Geophys Geosyst 14:947–961. https://doi.org/10.1029/2012GC004440

    Article  Google Scholar 

  • Gans PB (1997) Large-magnitude Oligo-Miocene extension in southern Sonora: implications for the tectonic evolution of northwest México. Tectonics 16(3):388–408. https://doi.org/10.1029/97TC00496

    Article  Google Scholar 

  • García-Martínez D, Molina-Garza RS, Roldan-Quintana J, Mendívil-Quijada H (2014) Ca. 13 Ma strike-slip deformation in coastal Sonora from a large-scale, en-echelon, brittle-ductile, dextral shear indicator: Implications for the evolution of the California rift: Geofis. Int. 53:435–455. https://doi.org/10.1016/S0016-7169(14)70077-7

    Article  Google Scholar 

  • Gastil RG, Lemone DV, Stewart WJ (1973) Permian fusulinids from near San Felipe, Baja California. American Association of Petroleum Geologists Bulletin 57(4):746–747

    Google Scholar 

  • Gastil G, Krummenacheer D, Minch J (1979) The record of Cenozoic volcanism around the Gulf of California. Geolog. Soc. Am Bull 90:839–857

    Article  Google Scholar 

  • Glatzmeier K-H, Soffel H, Negendank JFW (2009) Geomagnetic field variations. Springer-Verlaf, Berlin, Heidelberg

    Book  Google Scholar 

  • González-Escobar M, Suárez-Vidal F, Sojo-Amezquita A, Gallardo-Mata CG, Martin-Barajas A (2014) Consag Basin: northern Gulf of California, evidence of generation of new crust, based on seismic reflection data. International Geology Review 56(11):1315–1331. https://doi.org/10.1080/00206814.2014.941023

    Article  Google Scholar 

  • Harrison RJ, Feinberg JM (2008) FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem Geophys Geosyst 9:Q05016. https://doi.org/10.1029/2008GC001987

    Article  Google Scholar 

  • Harrison RJ, Muraszko J, Heslop D, Lascu I, Muxworthy AR, Roberts AP (2018) An improved algorithm for unmixing first-order reversal curve diagrams using principal component analysis. Geochemistry, Geophysics, Geosystems 19(5):1595–1610. https://doi.org/10.1029/2018GC007511

    Article  Google Scholar 

  • Herman SW (2013) A paleomagnetic investigation of vertical-axis rotations in coastal Sonora, México: evidence for distributed transtensional deformation during the Proto-Gulf shift from a subduction-dominated to transform-dominated plate boundary in the Gulf of California [M.S. Thesis] University of California-Santa Barbara, Santa Barbara (39 p)

  • Heslop D, Dekkers MJ, Kruiver PP, van Oorschot IHM (2002) Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm. Geophys J Int 148(1):58–64. https://doi.org/10.1046/j.0956-540x.2001.01558.x

    Article  Google Scholar 

  • Heslop D, McIntosh G, Dekkers MJ (2004) Using time- and temperature-dependent Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions. Geophys J Int 157(1):55–63. https://doi.org/10.1111/j.1365-246X.2004.02155.x

    Article  Google Scholar 

  • Heslop D, Roberts AP (2012) Estimation of significance levels and confidence intervals for first-order reversal curve distributions. Geochem Geophys Geosyst 13:Q12Z40. https://doi.org/10.1029/2012GC004115

    Article  Google Scholar 

  • Hopkinson J (1889) Magnetic and other physical properties of iron at a high temperature. Philos Trans R S Lond A 180:443–465

    Article  Google Scholar 

  • Karig DE, Jensky W (1972) Proto-Gulf of California. Earth Planet Sci Lett 17(1):169–174. https://doi.org/10.1016/0012-821X(72)90272-5

    Article  Google Scholar 

  • Khokhlov G, Hulot G (2015) Principal component analysis of palaeomagnetic directions: converting a Maximum Angular Deviation (MAD) into an α95 angle. Geophys J Int 204:274–291. https://doi.org/10.1093/gji/ggv451

    Article  Google Scholar 

  • Kruiver PP, Dekkers MJ, Heslop D (2001) Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization. Earth Planet Sci Lett 189(3–4):269–276. https://doi.org/10.1016/S0012-821X(01)00367-3

    Article  Google Scholar 

  • Lilova KI, Pearce CI, Gorski C, Rosso KM, Navrotsky A (2012) Thermodynamics of the magnetite-ulvöspinel (Fe3O4-Fe2TiO4) solid solution. Am Mineral 97(8–9):1330–1338. https://doi.org/10.2138/am.2012.4076

    Article  Google Scholar 

  • Lonsdale P (1989) Geology and tectonic history of the Gulf of California. In: Winterer EL, Hussong DM, Decker RW (eds) The Eastern Pacific Ocean and Hawaii: Boulder, Colorado, Geological Society of America, Geology of North America. vol N, p 499–521. https://doi.org/10.1130/DNAG-GNA-N.499

  • Lonsdale P (1991) Structural patterns on the Pacific floor offshore of peninsular California. In: Dauphine, J.P., Simoneit, B.R.T. (Eds.), The Gulf and the Peninsular Province of the California. AAPG Memoir 47:87–125

  • Martín-Barajas A, González-Escobar M, Fletcher JM, Pacheco M, Oskin M, Dorsey R (2013) Thick deltaic sedimentation and detachment faulting delay the onset of continental rupture in the northern Gulf of California: Analysis of seismic reflection profiles. Tectonics 32(5):1294–1311. https://doi.org/10.1002/tect.20063,2013

    Article  Google Scholar 

  • Maxbauer DP, Feinberg JM, Fox DL (2016) MAX UnMix: a web application for unmixing magnetic coercivity distributions. Comput Geosci 95:140–145. https://doi.org/10.1016/j.cageo.2016.07.009

    Article  Google Scholar 

  • Mollo S, Giacomoni PP, Andronico D, Scarlato P (2015) Clinopyroxene and titanomagnetite cation redistributions at Mt. Etna volcano (Sicily, Italy): footprints of the final solidification history of lava fountains and lava flows. Chem Geol 406:45–54. https://doi.org/10.1016/j.chemgeo.2015.04.017

    Article  Google Scholar 

  • Mollo S, Putirka K, Iezzi G, Scarlato P (2012) The control of cooling rate on titanomagnetite composition: implications for a geospeedometry model applicable to alkaline rocks from Mt. Etna volcano. Contrib Miner Petrol 165:457–475. https://doi.org/10.1007/s00410-012-0817-6

    Article  Google Scholar 

  • Moore DG, Buffington EC (1968) Transform faulting and growth of the Gulf of California since the late Pliocene. Science 161:1238–1241. https://doi.org/10.1126/science.161.3847.1238

    Article  Google Scholar 

  • Mora-Alvarez, G., and McDowell, F.W., (2000) Miocene volcanism during late subduction and early rifting in the Sierra Santa Ursula of western Sonora, Mexico: Spec. Pap. Geol. Soc. Am 334:123–141. https://doi.org/10.1130/0-8137-2334-5.123

  • Mora-Klepeis G, McDowell FW (2004) Late Miocene calc-alkalic volcanism in northwestern Mexico: An expression of rift or subduction-related magmatism? J. South Am. Earth Sci 17:297–310. https://doi.org/10.1016/j.jsames.2004.08.001

    Article  Google Scholar 

  • Néel L (1955) Some theoretical aspects of rock-magnetism. Adv Phys 4(14):191–243. https://doi.org/10.1080/00018735500101204

    Article  Google Scholar 

  • Oskin M, Stock J, Martín-Barajas A (2001) Rapid localization of Pacific-North America plate motion in the Gulf of California. Geology 29(5):459–462

    Article  Google Scholar 

  • Oskin M, Stock J (2003) Pacific-North America plate motion and opening of the Upper Delfín basin, northern Gulf of California, Mexico. GSA Bull 115(1):1173–1190. https://doi.org/10.1130/B25154.1

    Article  Google Scholar 

  • Özdemir Ö, Dunlop DJ, Berquó TS (2008) Morin transition in hematite: size dependence and thermal hysteresis. Geochem Geophys Geosyst 9:Q10Z01. https://doi.org/10.1029/2008GC002110

    Article  Google Scholar 

  • Pallares C, Maury RC, Bellon H, Royer JY, Calmus T, Aguillón-Robles A, Cotten J, Benoit M, Michaud F, Bourgois J (2007) Slabtearing following ridge-trench collision: Evidence from Miocene volcanism in Baja California, México. Journal of Volcanology and Geothermal Research 161(1–2):95–117

    Article  Google Scholar 

  • Paterson GA, Zhao X, Jackson M, Heslop D (2018) Measuring, processing, and analyzing hysteresis data. Geochem Geophys Geosyst 19(7):1925–1945. https://doi.org/10.1029/2018GC007620

    Article  Google Scholar 

  • Paz-Moreno FA, Demant A (1999) The recent Isla San Luis volcanic center: petrology of a rift-related volcanic suite in the northern Gulf of California, Mexico. J Volcanol Geotherm Res 93:31–52. https://doi.org/10.1016/S0377-0273(99)00083-9

    Article  Google Scholar 

  • Plattner C, Malservisi R. Dixon TH, LaFemina P, Sella GF, Fletcher J, Suarez-Vidal F (2007) New constraints on relative motion between the Pacific plate and Baja California microplate (Mexico) from GPS measurements: Geophysical Journal International 170:1373–1380. https://doi.org/10.1111/j.1365-246X.2007.03494.x

  • Pompa-Mera V, Schaaf P, Hernández-Treviño T, Weber B, Solís-Pichardo G, Villanueva-Lascurain D, Layer P (2013) Geology, geochronology, and geochemistry of Isla María Madre, Nayarit, Mexico. Rev Mex Cienc Geol 30(1):1–23

    Google Scholar 

  • Roberts AP, Hu P, Harrison RJ, Heslop D, Muxworthy AR, Oda H et al (2019) Domain state diagnosis in rock magnetism: evaluation of potential alternatives to the Day diagram. J Geophys Res: Solid Earth 124:5286–5314. https://doi.org/10.1029/2018JB017049

    Article  Google Scholar 

  • Robertson DJ, France DE (1994) Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetization acquisition curves. Phys Earth Planet Int 82(3–4):223–234. https://doi.org/10.1016/0031-9201(94)90074-4

    Article  Google Scholar 

  • Saito T, Ishikawa N, Kamata H (2007) Magnetic petrology of the 1991–1995 dacite lava of Unzen volcano, Japan: degree of oxidation and implications for the growth of lava domes. J Volcanol Geotherm Res 164:268–283. https://doi.org/10.1016/j.jvolgeores.2007.05.015

    Article  Google Scholar 

  • Seiler C, Fletcher JM, Quigley MC, Gleadow AJW, Kohn BP (2010) Neogene structural evolution of the Sierra San Felipe, Baja California: evidence for proto-Gulf transtension in the Gulf Extensional Province? Tectonophysics 488:87–109

    Article  Google Scholar 

  • Skinner SM (2013) Plate tectonic constraints on flat subduction and paleomagnetic constraints on rifting. [Ph.D. dissertation] California Institute of Technology (257p)

  • Spencer JE, Normark WR (1979) Tosco-Abreojos fault zone: a Neogene transform plate boundary within the Pacific margin of southern Baja California. Mexico. Geology 7(11):554–557

    Article  Google Scholar 

  • Stock JM, Hodges KV (1989) Pre-Pliocene extension around the Gulf of California and the transfer of Baja California to the Pacific plate. Tectonics 8(1):99–115. https://doi.org/10.1029/TC008i001p00099

    Article  Google Scholar 

  • Stock JM, Lee J (1994) Do microplates in subduction zones leave a geological record?: Tectonics 13:1472–1487. https://doi.org/10.1029/94TC01808

  • Tauxe L, Bertram HN, Seberino C (2002a) Physical interpretation of hysteresis loops: micromagnetic modeling of fine particle magnetite. Geochem Geophys Geosyst 3(10):1055. https://doi.org/10.1029/2001GC000241

  • Tauxe L, Bertram HN, Seberino C (2002b) Physical interpretation of hysteresis loops: Micromagnetic modelling of fine particle magnetite. Geochem Geophys Geosyst 3:1–22. https://doi.org/10.1029/2001GC000280

    Article  Google Scholar 

  • Torsvik TH, van der Voo R, Preeden U, Niocaill C, Steinberger B, Doubrovine P, van Hinsbergen DJJ, Domeier M, Gaina C, Tohver E, Meert JG, McCausland PJA, Cocks LRM (2012) Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci Rev 114(3–4):325–368. https://doi.org/10.1016/j.earscirev.2012.06.007

    Article  Google Scholar 

  • Turner MB, Cronin SJ, Stewart RB, Bebbington M, Smith IEM (2008) Using titanomagnetite textures to elucidate volcanic eruption histories. Geol 36:31–34. https://doi.org/10.1130/G24186A.1

    Article  Google Scholar 

  • Umhoefer PJ, Darin MH, Bennett SEK, Skinner LA, Dorsey RJ, Oskin ME (2018) Breaching of strike-slip faults and successive flooding of pull-apart basins to form the Gulf of California seaway from ca. 8–6 Ma. Geology. https://doi.org/10.1130/G40242.1

  • Velderrain-Rojas LA, Vidal-Solano JR, Alva-Valdivia LM, Vega-Granillo R, López-Martinez M (2021) Isla San Pedro Nolasco, an exotic block in the Gulf of California: insights from geological, geochemical and geochronological studies. Geosciences Frontiers (submitted)

  • Velderrain-Rojas LA, Vidal-Solano JR, Alva-Valdivia LM, Vega-Granillo R (2021) Late Miocene silicic subvolcanic plumbing system related to oblique rifting in the Pacific North American plate boundary, Sonora, Mexico: geodynamic implication in a regional context. Int Geol Rev. https://doi.org/10.1080/00206814.2021.1878396.

  • Vidal-Solano J, Paz Moreno FA, Iriondo A, Demant A, Cochemé JJ (2005) Ignimbrites hyperalcalines d’ǎge Miocène moyen, dans la région d’Hermosillo (Sonora, Mexique): Comptes Rendus - Geosci. 337:1421–1430. https://doi.org/10.1016/j.crte.2005.08.007

  • Vidal-Solano JR, Lozano-Santa Cruz R, Zamora O, Mendoza-Cordova A, Stock JM (2013) Geochemistry of the extensive peralkaline pyroclastic flow deposit of NW Mexico, based on conventional and handheld X-ray fluorescence. Geodynamic Implications in a Regional Context. J Iberian Geol 391:121–130. https://doi.org/10.5209/rev_JIGE.2013.v39.n1.41754

    Article  Google Scholar 

  • Vigneresse JL, Tikoff B, Améglio L (1999) Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons. Tectonophysics 302(3–4):203–224

    Article  Google Scholar 

  • Zhao X, Roberts AP, Heslop D, Paterson GA, Li YL, Li JH (2017) Magnetic domain state diagnosis using hysteresis reversal curves. J Geophys Res Solid Earth 122:4767–4789. https://doi.org/10.1002/2016JB013683

    Article  Google Scholar 

  • Zhou W, Van Der Voo R, Peacor DR, Zhang Y (2000) Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB. Earth Planet Sci Lett 179:9–20. https://doi.org/10.1016/S0012-821X(00)00100-X

    Article  Google Scholar 

  • Zijderveld JD (1967) Demagnetization of Rocks: analysis of results. Methods in paleomagnetism. Elsevier, Amsterdam, pp 254–286

    Google Scholar 

Download references

Acknowledgements

We are very grateful to Professor S. Bennett for the detailed revision that greatly improves this manuscript. An anonymous reviewer is also thanked. We thank to all staff of the BCCT-UNAM (head, Saúl Armendariz) for their technical assistance.

Funding

This work received financial support from Dirección General de Asuntos del Personal Académico-UNAM research project IN101521 and Consejo Nacional de Ciencia y Tecnología research grant #180784, Mexico to LAMV and JRVS, respectively.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Luis M. Alva-Valdivia.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial responsibility: A. Tibaldi; Deputy Executive Editor: L. Pioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alva-Valdivia, L.M., Vidal-Solano, J.R., Velderrain-Rojas, L.A. et al. Rock magnetic characterization and paleomagnetic directional analysis of Isla San Pedro Nolasco dikes, Gulf of California, Mexico. Bull Volcanol 83, 52 (2021). https://doi.org/10.1007/s00445-021-01477-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01477-w

Keywords

Navigation